- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用一个制表符分隔的文件,如下所示:
0 abch7619 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. 42Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat…..........
1 uewl0928 Duis aute irure d21olor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excep3teur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
0 ahwb3612 Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur
1 llll2019 adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur???? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?
0 jdne2319 At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
1 asbq0918 Et harum quidem rerum facilis est et expedita distinctio................................ Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et aut
我的目标是生成一个如下所示的数据框:
classification ID word1 word2 word3 word4
foo foo foo foo foo foo
其中 TSV 长文本字段中的 ech 单词作为特征(列)出现,其值为单词 TFIDF。
我可以尝试手动执行此操作,但我希望使用 sklearn's TFIDFVECTORIZER
来生产这个。但是,我需要预处理字段中的文本,以遵循某些准则。
到目前为止,我可以读取 .tsv
文件、创建数据帧并预处理文本。我遇到的问题是组合我的文本格式化函数,然后将其传递给 TFIDFVECTORIZER
以下是我所拥有的:
import nltk, string, csv, operator, re, collections, sys, struct, zlib, ast, io, math, time
from nltk.tokenize import word_tokenize, RegexpTokenizer
from nltk.corpus import stopwords
from collections import defaultdict, Counter
from bs4 import BeautifulSoup as soup
from math import sqrt
from itertools import islice
import pandas as pd
# This function removes numbers from an array
def remove_nums(arr):
# Declare a regular expression
pattern = '[0-9]'
# Remove the pattern, which is a number
arr = [re.sub(pattern, '', i) for i in arr]
# Return the array with numbers removed
return arr
# This function cleans the passed in paragraph and parses it
def get_words(para):
# Create a set of stop words
stop_words = set(stopwords.words('english'))
# Split it into lower case
lower = para.lower().split()
# Remove punctuation
no_punctuation = (nopunc.translate(str.maketrans('', '', string.punctuation)) for nopunc in lower)
# Remove integers
no_integers = remove_nums(no_punctuation)
# Remove stop words
dirty_tokens = (data for data in no_integers if data not in stop_words)
# Ensure it is not empty
tokens = [data for data in dirty_tokens if data.strip()]
# Ensure there is more than 1 character to make up the word
tokens = [data for data in tokens if len(data) > 1]
# Return the tokens
return tokens
def main():
tsv_file = "filepath"
print(tsv_file)
csv_table=pd.read_csv(tsv_file, sep='\t')
csv_table.columns = ['rating', 'ID', 'text']
s = pd.Series(csv_table['text'])
new = s.str.cat(sep=' ')
vocab = get_words(new)
print(vocab)
main()
产生:
['decent', 'terribly', 'inconsistent', 'food', 'ive', 'great', 'dishes', 'terrible', 'ones', 'love', 'chaat', 'times', 'great', 'fried', 'greasy', 'mess', 'bad', 'way', 'good', 'way', 'usually', 'matar', 'paneer', 'great', 'oversalted', 'peas', 'plain', 'bad', 'dont', 'know', 'coinflip', 'good', 'food', 'oversalted', 'overcooked', 'bowl', 'either', 'way', 'portions', 'generous', 'looks', 'arent', 'everything', 'little', 'divito', 'looks', 'little', 'scary', 'looking', 'like', 'ive', 'said', 'cant', 'judge', 'book', 'cover', 'necessarily', 'kind', 'place', 'take', 'date', 'unless', 'shes', 'blind', 'hungry', 'man', 'oh', 'man', 'food', 'ever', 'good', 'ordered', 'breakfast', 'lunch', 'dinner', 'fantastico', 'make', 'homemade', 'corn', 'tortillas', 'several', 'salsas', 'breakfast', 'burritos', 'world', 'cost', 'mcdonalds', 'meal', 'family', 'eats', 'frequently', 'frankly', 'tired',
但是,我不确定这是否是允许 TFIDFVECTORIZER
正常工作的正确格式。当我尝试使用它时,我使用了以下正确运行的代码:
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf = TfidfVectorizer()
feature_matrix = tfidf.fit_transform(csv_table['text'])
df = pd.DataFrame(data=feature_matrix.todense(), columns=tfidf.get_feature_names())
print(df)
但只是给了我这样的结果:
(0, 4147) 0.09801030349526582
(0, 4482) 0.11236176486916101
(0, 6304) 0.13511683683910816
: :
(1998, 11298) 0.08469000607646575
(1998, 500) 0.10185473904595721
(1998, 3196) 0.07801251063240894
而且我不知道我在看什么。如何使用 TFIDFVECTORIZER 来实现使用 TFIDF 值创建每个单词的特征矩阵(在应用我的清理逻辑之后)的目标?
最佳答案
fit_transform 的输出是一个稀疏矩阵,因此您需要将其转换为密集形式,并包括您可以尝试的清理步骤:
s = pd.Series(csv_table['text'])
corpus = s.apply(lambda s: ' '.join(get_words(s)))
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(corpus)
df = pd.DataFrame(data=X.todense(), columns=vectorizer.get_feature_names())
print(df)
基本上,您需要做的就是对 csv_table['text']
(元素在s
中),然后将其传递给fit_transform
。
关于python - 如何在 pandas 数据帧上使用 sklearn TFIdfVectorizer,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58477310/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!