- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这是问题 of this 的后续问题我有一个数据框如下:
KPI Tata JSW scope BIC Peer BIC_diff Avg_diff
0 Gross Margin % 0.5820 0.4760 Max 0.582 0.268 0 0.313
2 SG&A/Revenue 0.1410 0.0300 Min 0.029 0.0645 0.112 0.0765
3 ROA 0.0640 0.0930 Max 0.093 0.0457 -0.029 0.0183
4 ROE 0.1380 0.2430 Max 0.243 0.1024 -0.105 0.0356
5 Inventory Turnover 2.2000 3.2700 Min 1.71 3.892 0.49 -1.692
6 Current Ratio 0.9000 0.8000 Min 0.5 1.15 0.4 -0.25
现在我想添加另一列,其单元格值以 df['scope']
、df['BIC_diff']
和 df[ 为条件'Peer_diff']
。所以结果列如下所示。基本条件如下:
cond_comments = [(df['scope']=='Max') & (df['BIC_diff'] > 0) & (df['Avg_diff'] > 0),
(df['scope']=='Max') & (df['BIC_diff'] <= 0) & (df['Avg_diff'] <= 0),
(df['scope']=='Max') & (df['BIC_diff'] <= 0) & (df['Avg_diff'] > 0),
(df['scope']=='Min') & (df['BIC_diff'] > 0) & (df['Avg_diff'] > 0),
(df['scope']=='Min') & (df['BIC_diff'] <= 0) & (df['Avg_diff'] <= 0),
(df['scope']=='Min') & (df['BIC_diff'] > 0) & (df['Avg_diff'] <= 0)]
根据上述条件,我尝试添加另一个名为 comments
的列,如下所示。想法是将注释内相关位置的 KPI
列文本与 BIC_diff
和 Peer_diff
中的值连接
.
KPI BIC Peer BIC_diff Avg_diff comments
Gross Margin % 0.582 0.268 0 0.313 Gross Margin is better than peer by 31.3% ## <-- `Gross Margin is from KPI. 31.3% is from Avg_diff.
SG&A/Revenue 0.029 0.0645 0.112 0.0765 There is a scope of improvement for SG&A/Revenue by at least 7.65% ## <-- SG&A is taken from KPI. 7.65% is taken from Avg_diff.
ROA 0.093 0.0457 -0.029 0.0183 There is a scope of improvement for ROA by 2.90% ## <-- ROA is from KPI. 2.90% is taken from BIC_diff absolute value.
ROE 0.243 0.1024 -0.105 0.0356 There is a scope of improvement for ROE by 10.50%
Inventory Turnover 1.71 3.892 0.49 -1.692
Current Ratio 0.5 1.15 0.4 -0.25
为了实现上述目标,我尝试了以下方法:
cond_comments = [(df['scope']=='Max') & (df['BIC_diff'] > 0) & (df['Avg_diff'] > 0),
(df['scope']=='Max') & (df['BIC_diff'] <= 0) & (df['Avg_diff'] <= 0),
(df['scope']=='Max') & (df['BIC_diff'] <= 0) & (df['Avg_diff'] > 0),
(df['scope']=='Min') & (df['BIC_diff'] > 0) & (df['Avg_diff'] > 0),
(df['scope']=='Min') & (df['BIC_diff'] <= 0) & (df['Avg_diff'] <= 0),
(df['scope']=='Min') & (df['BIC_diff'] > 0) & (df['Avg_diff'] <= 0)]
vals_comments = ['{0} is better than BIC and peer by {1} and {2} respectively'.format(df['KPI'],df['BIC_diff'],df['Avg_diff']),
'{0} has scope of improvement by atleast {1}'.format(df['KPI'],df['Avg_diff']),
'While {0} is better than its peer, still there is a scope of improvement by {1}'.format(df['KPI'],df['BIC_diff']),
'{0} has scope of improvement by atleast {1}'.format(df['KPI'],df['Avg_diff']),
'{0} is better than BIC and peer by {1} and {2} respectively'.format(df['KPI'],df['BIC_diff'],df['Avg_diff']),
'While {0} is better than its peer, still there is a scope of improvement by {1}'.format(df['KPI'],df['BIC_diff'])]
df['Comments'] = pd.np.select(cond_comments, vals_comments,default='No Comment')
但是,上面的代码没有生成我上面列出的注释。
感谢任何帮助。
PS:请原谅任何可能的格式错误。
最佳答案
我将创建一个函数,首先执行所有条件,然后按行应用它。这样就可以更轻松地添加新条件并查看什么条件会导致什么结果。
def create_comment(line: dict) -> str:
# column values are accessible as in a dictionary
if (line['scope']=='Max') and (line['BIC_diff'] > 0) and (line['Avg_diff'] > 0):
return '{0} is better than BIC and peer by {1} and {2} respectively'.format(line['KPI'],line['BIC_diff'],line['Avg_diff'])
elif (line['scope']=='Max') and (line['BIC_diff'] <= 0) and (line['Avg_diff'] <= 0):
return '{0} has scope of improvement by at least {1}'.format(line['KPI'],line['Avg_diff'])
### Insert the remaining conditions below
else:
return 'No Comment'
# Then apply with axis=1 to do it row-wise
df['Comments'] = df.apply(create_comment, axis=1)
关于python - Pandas:根据多个条件生成句子并将其显示在单独的列中,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58637847/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!