- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想绘制一个热图,以更好地可视化散点图中的分布模式,但在生成热图时遇到一些问题。 y 轴数据从 0 到 15,x 轴数据从 0 到 7。
我引用了下面关于如何生成热图的帖子,并编写了以下代码,这似乎给了我一个散点图,该散点图似乎与我希望从散点图中得到的结果相去甚远。
Generate a heatmap in MatPlotLib using a scatter data set
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm as CM
x = [0.3178, 2.0857, 2.5922, 0.088, 0.3, 0.4006, 1.0241, 0.1913, 0.56, 1.1828, 2.6879, 5.8044, 0.3593, 1.8732, 10.8003, 0.3457, 1.7003, 0.1677, 0.7442, 1.5731, 0.4927, 0.4143, 0.558, 0.2486, 0.3009, 0.163, 2.645, 4.1364, 13.8043, 3.9997, 0.258, 0.78, 10.3991, 0.2425, 0.3335, 4.8002, 0.3529, 5.9263, 0.151, 0.34, 0.1146, 13.6505, 2.8802, 3.2738, 0.5562, 0.5067, 1.5142, 2.0373, 2.5427, 12.1005]
y = [4.4903, 6.8879, 5.6211, 5.1128, 1.8125, 4.9716, 2.6847, 5.3744, 6.5254, 3.875, 3.6667, 2.0, 6.9811, 6.0501, 6.0, 6.8478, 5.0, 5.3676, 3.403, 6.1015, 6.8793, 4.7684, 3.5934, 2.6224, 5.9319, 1.8191, 3.0554, 3.5207, 3.6786, 3.0, 5.9041, 1.9128, 6.3333, 5.4949, 5.7135, 6.0, 5.5348, 3.0, 5.2644, 5.8111, 1.093, 4.0, 7.0, 6.0, 3.8684, 4.8, 1.5283, 6.6932, 7.0, 4.0]
# plot the scatter_plot
xposition = [0,7]
plt.figure()
plt.plot(y,x,'r^', label='series_1',markersize=12)
plt.gcf().set_size_inches(11.7, 8.27)
ax = plt.gca()
ax.tick_params(axis = 'both', which = 'major', labelsize = 16)
for xc in range(0,xposition[-1]+1):
ax.axvline(x=xc, color='darkgrey', linestyle='--', linewidth = 2)
plt.xlabel('x', fontsize=18)
plt.ylabel('y', fontsize=18)
plt.xlim(xposition)
plt.ylim([0,15])
plt.legend(loc='upper right',fontsize = 'x-large')
# plot the heatmap
plt.figure()
heatmap, xedges, yedges = np.histogram2d(y, x, bins=50)
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
plt.clf()
plt.imshow(heatmap.T, extent=extent, interpolation='nearest', origin='lower')
plt.pcolormesh(xedges, yedges, heatmap, cmap=CM.RdBu_r, vmin=-7, vmax=7)
plt.gcf().set_size_inches(11.7, 8.27)
plt.show()
对于结果,首先,热图的绘图大小似乎与散点图不同,尽管我将它们指定为相同。其次,热图似乎与散点图中似乎聚集在右下角的模式不匹配。请告知我应该修改哪里以获得正确的热图。谢谢。
最佳答案
下面的代码似乎可以修复它。你犯了 3 个错误。
您使图形大小相同,而不是轴大小相同。我为散点图添加了 set_aspect 以使纵横比相等,与热图中相同。
您绘制了一个 imshow,然后在其上绘制了一个 pcolormesh(您不需要两者都需要)。
出于某种原因,pcolormesh 期望热图相对于 imshow 的要求进行转置。我把它转过来了。
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm as CM
x = [0.3178, 2.0857, 2.5922, 0.088, 0.3, 0.4006, 1.0241, 0.1913, 0.56, 1.1828, 2.6879, 5.8044, 0.3593, 1.8732, 10.8003, 0.3457, 1.7003, 0.1677, 0.7442, 1.5731, 0.4927, 0.4143, 0.558, 0.2486, 0.3009, 0.163, 2.645, 4.1364, 13.8043, 3.9997, 0.258, 0.78, 10.3991, 0.2425, 0.3335, 4.8002, 0.3529, 5.9263, 0.151, 0.34, 0.1146, 13.6505, 2.8802, 3.2738, 0.5562, 0.5067, 1.5142, 2.0373, 2.5427, 12.1005]
y = [4.4903, 6.8879, 5.6211, 5.1128, 1.8125, 4.9716, 2.6847, 5.3744, 6.5254, 3.875, 3.6667, 2.0, 6.9811, 6.0501, 6.0, 6.8478, 5.0, 5.3676, 3.403, 6.1015, 6.8793, 4.7684, 3.5934, 2.6224, 5.9319, 1.8191, 3.0554, 3.5207, 3.6786, 3.0, 5.9041, 1.9128, 6.3333, 5.4949, 5.7135, 6.0, 5.5348, 3.0, 5.2644, 5.8111, 1.093, 4.0, 7.0, 6.0, 3.8684, 4.8, 1.5283, 6.6932, 7.0, 4.0]
# plot the scatter_plot
xposition = [0,7]
plt.figure()
plt.plot(y,x,'r^', label='series_1',markersize=12)
plt.gcf().set_size_inches(11.7, 8.27)
ax = plt.gca()
ax.tick_params(axis = 'both', which = 'major', labelsize = 16)
for xc in range(0,xposition[-1]+1):
ax.axvline(x=xc, color='darkgrey', linestyle='--', linewidth = 2)
plt.xlabel('x', fontsize=18)
plt.ylabel('y', fontsize=18)
plt.xlim(xposition)
plt.ylim([0,15])
plt.legend(loc='upper right',fontsize = 'x-large')
plt.gca().set_aspect('equal')
heatmap, xedges, yedges = np.histogram2d(y, x, bins=50)
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
# plot the heatmap
plt.figure()
#plt.imshow(heatmap.T, extent=extent, interpolation='nearest', origin='lower')
plt.pcolormesh(xedges, yedges, heatmap.transpose(), cmap=CM.RdBu_r, vmin=-7, vmax=7)
plt.gcf().set_size_inches(11.7, 8.27)
plt.gca().set_aspect('equal')
plt.show()
另外,为什么不尝试使用子图而不是像下面的示例中那样使用两个图形?虽然添加颜色条时您可能会遇到一些问题,但这是可以解决的。
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm as CM
x = [0.3178, 2.0857, 2.5922, 0.088, 0.3, 0.4006, 1.0241, 0.1913, 0.56, 1.1828, 2.6879, 5.8044, 0.3593, 1.8732, 10.8003, 0.3457, 1.7003, 0.1677, 0.7442, 1.5731, 0.4927, 0.4143, 0.558, 0.2486, 0.3009, 0.163, 2.645, 4.1364, 13.8043, 3.9997, 0.258, 0.78, 10.3991, 0.2425, 0.3335, 4.8002, 0.3529, 5.9263, 0.151, 0.34, 0.1146, 13.6505, 2.8802, 3.2738, 0.5562, 0.5067, 1.5142, 2.0373, 2.5427, 12.1005]
y = [4.4903, 6.8879, 5.6211, 5.1128, 1.8125, 4.9716, 2.6847, 5.3744, 6.5254, 3.875, 3.6667, 2.0, 6.9811, 6.0501, 6.0, 6.8478, 5.0, 5.3676, 3.403, 6.1015, 6.8793, 4.7684, 3.5934, 2.6224, 5.9319, 1.8191, 3.0554, 3.5207, 3.6786, 3.0, 5.9041, 1.9128, 6.3333, 5.4949, 5.7135, 6.0, 5.5348, 3.0, 5.2644, 5.8111, 1.093, 4.0, 7.0, 6.0, 3.8684, 4.8, 1.5283, 6.6932, 7.0, 4.0]
# plot the scatter_plot
xposition = [0,7]
plt.figure()
ax1 = plt.subplot(1,2,1)
plt.plot(y,x,'r^', label='series_1',markersize=12)
plt.gcf().set_size_inches(11.7, 8.27)
ax1.tick_params(axis = 'both', which = 'major', labelsize = 16)
for xc in range(0,xposition[-1]+1):
ax1.axvline(x=xc, color='darkgrey', linestyle='--', linewidth = 2)
plt.xlabel('x', fontsize=18)
plt.ylabel('y', fontsize=18)
plt.xlim(xposition)
plt.ylim([0,15])
plt.legend(loc='upper right',fontsize = 'x-large')
plt.gca().set_aspect('equal')
heatmap, xedges, yedges = np.histogram2d(y, x, bins=50)
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
# plot the heatmap
#plt.figure()
#plt.imshow(heatmap.T, extent=extent, interpolation='nearest', origin='lower')
ax2 = plt.subplot(1,2,2,sharex=ax1,sharey=ax1)
heatmap_copy = heatmap.transpose()
heatmap_copy[heatmap_copy==0] = np.nan
plt.pcolormesh(xedges, yedges, heatmap_copy, cmap=CM.RdBu_r, vmin=-7, vmax=7)
ax2.set_aspect('equal')
plt.xlabel('x', fontsize=18)
plt.ylabel('y', fontsize=18)
plt.ylim([0,3])
ax2.tick_params(axis = 'both', which = 'major', labelsize = 16)
for xc in range(0,xposition[-1]+1):
ax2.axvline(x=xc, color='darkgrey', linestyle='--', linewidth = 2)
plt.show()
关于python - 如何修复用Python绘制的热图,它看起来与散点图相去甚远,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58812627/
我想填充 3D 等高线图 (contour3(X,Y,Z)),就像 2D 等高线填充图 (contourf(X,Y,Z))。但我无法弄清楚如何实现这一目标。 contour3 和 surf 的组合不是
我有一个 c3.js 折线图,表示 2 个值的演变。我需要折线图的工具提示是饼图(工具提示 = 另一个 c3.js 图形)。 这是我成功的: http://jsfiddle.net/owhxgaqm/
我有具有结构的 Pandas 数据框: A B 0 1 1 1 2 1 2 3 4 3 3 7 4 6 8 如何生成 Seaborn Violin 图,每列作为其自己的单独
我正在使用 D3DXSPRITE 方法将我的 map 图 block 绘制到屏幕上,我刚刚添加了一个缩放功能,当您按住向上箭头时会放大,但注意到您现在可以看到图 block 之间的间隙,这是一些屏幕截
今天我们开始学习目前学习到的最难最复杂的数据结构图。 简单回顾一下之前学习的数据结构,数组、单链表、队列等线性表中数据元素是一对一关系,而树结构中数据元素是一对多关系,而图结构中数据元素则是多对
1、系统环境如下图: 2、为该系统添加一块新的虚拟硬盘,添加后需重启虚拟机,否则系统不识别;如下图,/dev/sdc 是新添加的硬盘; 3、fdisk /dev/sdc为新硬盘创建分区:
1、nagios简介 nagios是一款开源的电脑系统和网络监视工具,能有效监控windows、linux和unix的主机状态,交换机路由器等网络设置,打印机等。在系统或服务状态异常时发
越来越多人开始习惯用手机上网,浏览网页、查看邮件···移动化已经成为互联网发展必然趋势,包括facebook在内的很多互联网公司都将移动广告作为下一个淘金地
1.图片处理 1.圆角图片 复制代码 代码如下: /** * 转换成圆角 * &n
Microsoft SQL Server Management Studio是SQL SERVER的客户端工具,相信大家都知道。我不知道大伙使用导入数据的情况怎么样,反正我最近是遇到过。主要是因为没
debian6系统: 首先先安装mysql吧: 打开终端(root)用户登入 apt-get purge mysql-server-5.5 安装完成后: 默认情况下Mysql只允许本地登录
fedora16英文环境下支持中文输入法的方法 fedora16英文环境下支持FCITX的中文输入法: $ im-chooser 就会出现选择界面,选择第二个就行了。
Net预编译命令 C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\aspnet_compiler.exe -? 显示说明 我们需要选择的命令为&n
有的时候电脑出现一些故障有的时候通过将其修改bios设置的方法来解决故障,那么在bios上设置能不能将电脑恢复出厂设置呢?其实也是可以的。方法也很简单的,只要会进入电脑的bios懂的上面英文的意思就
笔者曾介绍过Deepin 将对龙芯进行全面支持,打造最优美龙芯电脑桌面。现在Deepin团队移植工作取得了突破性的成果,Deepin桌面已经在龙芯3A和龙芯3B电脑上成功运行起来了。 以下为龙芯3
在安装一些软件之后,我们的电脑总是会发生一点小变化,不是桌面上多了几个网址图标,就是IE浏览器的默认主页被篡改成乱七八糟的网址。最可气的是,在IE设置中将默认主页改回来后,下次启动Win7后又变了回
“注册表编辑器怎么打开”虽说不是很难的问题,但是对于对电脑常识不是很擅长的网民来说,当电脑出现问题或需要更改设置时,着实还是件头疼的问题。因为需要打开注册表进行操作解决。那么如何打开注册表编辑器呢?
这篇文章重点介绍10个重要的WordPress安全插件和技巧,用来保护WordPress网站或者博客。 1. WP Security 人工帮助你修复被黑客入侵的网站,只要按照他们网站上的联系电话
其实运用object和javascript调用外部文件,也能实现不同栏目调用不同友情链接,即相当于调用不同栏目友情链接文件, {dede:field.typeid/}来获取当前栏目的ID。
我有一个复值矩阵。 如果我发出命令: plot(myMatrix) 然后它在图形设备上显示一种散点图,X 轴标记为 Re(myMatrix),Y 轴标记为 Im(myMatrix)。这显示了我正在寻找
我是一名优秀的程序员,十分优秀!