- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
为了进行微调,您将使用 CIFAR-100 数据集“bus”和“tiger”类的数据。你的任务是找出如何微调预训练的 CNN 模型,使用训练数据(我认为每个类 500 个图像)“bus”和“tiger”类来微调网络,并用相同2类的测试数据(每类100张图像)验证准确性。可以对选定的内容进行微调预训练模型的层数。微调最后一层、最后两层、最后三层时需要记录测试精度层、最后四层和所有五层
我的第一个问题如何仅使用 cifar100 中的巴士和老虎并训练模型?第二个问题是如何微调最后一层、最后两层等。
我正在 cifar 10 上进行预训练,然后想在总线和 Tiger 上使用从 cifar100 到finetune 的功能。
最佳答案
my first question how do I use only bus and tiger from cifar100 and train the model?
实际上这取决于你想要实现什么。请注意,在 CIFAR10 中没有 Tiger 或 Bus 类。您可以使用 CIFAR10 上的预训练网络仅为两个类(老虎和公共(public)汽车)创建一个新的分类器,或者将它们添加到现有的 10 个类中,结果您将获得 12 个类的分类器。在这两种情况下,您都必须将最后一层的大小从 10 修改为 2 或 12。
您只需从 CIFAR100 集合中提取那些可能使用其标签代表老虎或公共(public)汽车的图片,并将它们添加到您的训练集中。
Second question is how do I finetune last layer, last two layers, etc.
您可以卡住不想在训练期间修改的图层。卡住意味着该层的权重在训练过程中不会被损失函数的梯度更新。
如何执行此操作取决于您使用的框架。例如,在 Keras 中,您可以将不想训练的层的 trainable 参数设置为 false。请参阅下面的示例,了解如何卡住简单 CNN 中除最后两层之外的所有层。
from keras import Sequential
from keras.layers import Conv2D, Flatten, Dense
model = Sequential()
model.add(Conv2D(64, kernel_size=3, activation='relu', input_shape=(32, 32, 3)))
model.add(Conv2D(32, kernel_size=3, activation='relu'))
model.add(Conv2D(16, kernel_size=3, activation='relu'))
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(10, activation='softmax'))
for layer in model.layers[:-2]:
layer.trainable = False
关于python - 使用 cifar 100 数据预训练 cifar 10 网络,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58850038/
为了进行微调,您将使用 CIFAR-100 数据集“bus”和“tiger”类的数据。你的任务是找出如何微调预训练的 CNN 模型,使用训练数据(我认为每个类 500 个图像)“bus”和“tiger
我想使用 CIFAR-10 数据集,但我只想要 Frog 、狗、猫、马和鸟类,到目前为止我已经使用了以下代码: # Plot ad hoc CIFAR10 instances from ker
我尝试为 CIFAR-10 数据库构建神经网络。我使用了 Pytorch 框架。 我有一个关于数据加载步骤的问题。 transform_train = T.Compose([ T.Random
我想使用较少的训练数据样本来训练深度神经网络,以减少测试我的代码的时间。我想知道如何使用 Keras TensorFlow 对 Cifar-10 数据集进行子集化。我有以下代码用于训练 Cifar-1
在机器学习方面,我是一个相对初学者。 我一直在使用 Keras 和 TensorFlow 作为后端,但由于某种原因,当我使用 CIFAR-10 数据集时,我没有获得很好的准确性。 这是我的代码。 mo
美好的一天! (或夜晚) CIFAR-10 数据集上的全连接神经网络训练集的误分类错误可以有多低(对于 < 30 个隐藏层)? 是否有可能达到 0.001 或 0? 你能告诉我你的经历吗? 附注我想从
我正在尝试了解 Tensorflow,并且看到了官方示例之一,即 Cifar-10 模型。 在 cifar10.py ,在 inference() 中,您可以看到以下几行: with tf.varia
我想创建一个与 cifar-10 数据集格式相同的数据集,以便与 Tensorflow 一起使用。它应该有图像和标签。基本上,我希望能够获取 cifar-10 代码,但具有不同的图像和标签,并运行该代
我试图在 python 中加载 CIFAR-10 数据集,但它显示的键的名称非常不正常。 dict.keys() 给出以下输出: dict_keys([b'labels', b'batch_label
我已尝试修改 CIFAR-10 示例以在新的 TensorFlow 分布式运行时上运行。但是,在尝试运行该程序时出现以下错误: InvalidArgumentError: Cannot assign
我正在使用 cifar-10 数据集来训练我的分类器。我已经下载了数据集并尝试显示数据集中的图像。我使用了以下代码: from six.moves import cPickle as pickle f
为了让所有事情变得清楚,让我展示整个模型,这非常简单: from keras.datasets import cifar10 #much more libraries imported # simpl
我正在尝试使用深度学习技术构建一个分类器,并使用 cifar-10 数据集来构建一个分类器。我尝试构建一个具有 1024 个隐藏节点的分类器。每个图像的大小为 32*32*3(R-G-B)。由于我的计
我试图在 tensorflow 中使用 cifar100 数据集训练图像分类器模型,但准确率没有增加超过 1.2%。我用谷歌搜索了这个问题并找到了几种解决方案,但我的模型仍然表现不佳。 我实现了一些步
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 2 年前。 Improve this ques
我想使用 cifar 数据集和 keras 框架训练单层神经网络。由于数据集的每个图像都是 32 x 32 x 3,所以我不太确定如何使用没有卷积的单层网络来处理图像。我认为将每个图像展平为形状为 N
我试图使用来自 tensorflow 的 cifar-10 预测单个图像的类别。 我找到了这段代码,但是失败并出现了这个错误: 赋值要求两个张量的形状匹配。 lhs 形状= [18,384] rhs
我正在尝试下载 CIFAR-10 图像数据集; http://www.cs.toronto.edu/~kriz/cifar.html 在 R 中,但我似乎无法提取文件。我已经尝试了所有三种格式 .bi
我正在尝试通过为 cifar 数据集构建分类器来熟悉神经网络。我决定从 tflearn 存储库中获取一个示例,但是我遇到了麻烦。 有一些注意事项: 我正在使用 Jupyter Notebook 来测试
我正在尝试在 Keras 中的 CIFAR-10 数据集上训练 CNN,但只能获得 10% 左右的准确率,基本上是随机的。我正在训练超过 50 个 epoch,批量大小为 32,学习率为 0.01。我
我是一名优秀的程序员,十分优秀!