- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个非常大的 DataFrame,其中一列 (COL) 包含一系列值(即列表)。我想将此 COL 转换为标有特定数字的单独列,如果特定数字在 COL 中,则包含 1,否则包含 0。
以下是我目前的方法。但是,由于 OBSERVATIONS 和 MAX_VALUE 数量较多,此过程很慢。
import pandas as pd
import numpy as np
OBSERVATIONS = 100000 # number of values 600000
MAX_VALUE = 400 # 400
_ = pd.DataFrame({
'a':np.random.randint(2,20,OBSERVATIONS),
'b':np.random.randint(30,MAX_VALUE,OBSERVATIONS)
})
_['res'] = _.apply(lambda x: range(x['a'],x['b']),axis=1)
for i in range(MAX_VALUE):
_[f'{i}'] = _['res'].apply(lambda x: 1 if i in x else 0)
最佳答案
您可以尝试在 numpy
中进行计算,然后将 numpy
数组插入到数据帧中。这大约快了 5 倍:
import pandas as pd
import numpy as np
import time
OBSERVATIONS = 100_000 # number of values 600000
MAX_VALUE = 400 # 400
_ = pd.DataFrame({
'a':np.random.randint(2,20,OBSERVATIONS),
'b':np.random.randint(30,MAX_VALUE,OBSERVATIONS)
})
_['res'] = _.apply(lambda x: range(x['a'],x['b']),axis=1)
res1 = _.copy()
start = time.time()
for i in range(MAX_VALUE):
res1[f'{i}'] = res1['res'].apply(lambda x: 1 if i in x else 0)
print(f'original: {time.time() - start}')
start = time.time()
z = np.zeros((len(_), MAX_VALUE), dtype=np.int64)
for i,r in enumerate(_.res):
z[i,range(r.start,r.stop)]=1
res2 = pd.concat([_, pd.DataFrame(z)], axis=1)
res2.columns = list(map(str, res2.columns))
print(f'new : {time.time() - start}')
assert res1.equals(res2)
输出:
original: 23.649751663208008
new : 4.586429595947266
关于python - Pandas 如何将列表的列变成多列?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59078982/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!