- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
(使用 keras)训练模型时,val_loss
(如 keras 训练日志中所示)/epoch_loss
(如张量板中所示)指标是什么测量模型何时有多个输出?如果这很重要,那么这些输出是否也被加权了?
我的意思是多个单独的输出(例如 6 个形状 ()
的张量),而不是具有多个值的单个输出(例如 1 个形状 (6)
的张量)。 (尽管后者的答案可能对 future 的谷歌用户有用。)
我最初认为这将是所有输出的加权平均值。但我的观察与这个猜测并不相符。下面是张量板的屏幕截图,显示了每个输出的验证损失,以及 epoch_loss 值(也在验证中)。正如您所看到的,每个输出上的损失都在增加,但 epoch_loss 值却在不断减少。
我还确认这些指标与 val_*
指标相匹配(val_1_loss
、val_2_loss
、...、val_loss
)显示在keras训练日志中。
请注意,我对调查损失增加的原因或修复模型的方法或其他任何内容不感兴趣。我知道这是一个糟糕的模型。这只是超参数搜索中的一个模型,我选择它作为该问题的一个很好的例子。尽管我目前使用 val_loss 作为超参数搜索优化指标,但从这些数据来看这似乎不是一个好主意。我可以创建自己的指标来对所有输出进行加权平均值,但想了解 val_loss
实际测量的内容。
最佳答案
what does the val_loss / epoch_loss metric measure when the model has multiple outputs? And if it matters, then also if those outputs are weighted?
损失值使用 loss_weights
系数计算为多个输出损失的加权和。当没有定义权重时,损失只是损失的总和。
以下是代码中的引用:
关于python - 具有多个输出的 Tensorflow val_loss 定义,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59784165/
我在下面的类(class)中尝试获取包含每次训练的损失和验证损失的元组列表 class LossHistory(keras.callbacks.Callback): def on_train_
我是 tensorflow 新手,我正在尝试通过 github 中的示例来学习它,现在我找到了一个示例,但损失和 val_loss 的结果大于“1”(您可以在下面看到结果在 800 之间)和 700
我有一个简单的问题突然让我怀疑我的工作。 如果我只有训练和验证集,我是否可以在训练时监控 val_loss,或者这会增加我的训练偏差。我想在验证集训练结束时测试我的准确性,但突然我在想,如果我在训练时
当我在自定义回调中手动计算验证损失时,结果与使用 L2 内核正则化时 keras 报告的结果不同。 示例代码: class ValidationCallback(Callback): def
(使用 keras)训练模型时,val_loss(如 keras 训练日志中所示)/epoch_loss(如张量板中所示)指标是什么测量模型何时有多个输出?如果这很重要,那么这些输出是否也被加权了?
我是 Keras 新手,我正在使用它构建一个普通的神经网络来对数字 MNIST 数据集进行分类。 事先我已经将数据分为 3 部分:55000 个用于训练,5000 个用于评估,10000 个用于测试,
我根据此处讨论的内容为 mnist 数据集设置了一个去噪自动编码器: https://blog.keras.io/building-autoencoders-in-keras.html 我正在尝试查看
训练开始时,运行窗口中只显示loss和acc,缺少val_loss和val_acc。只有在最后,才会显示这些值。 model.add(Flatten()) model.add(Dense(512, a
我正在训练 Keras(Tensorflow 后端,Python,在 MacBook 上),并且在 fit_generator 函数的提前停止回调中遇到错误。错误如下: RuntimeWarning:
我正在尝试建立一个 LSTM 模型来预测股票第二天是上涨还是下跌。如您所见,一个简单的分类任务让我卡住了几天。我只选择 3 个特征来输入我的网络,下面我展示了我的预处理: # pre-processi
我正在尝试对图像进行分类,无论它们是猫、狗还是 Pandas 。数据包含所有图像(猫 + 狗 + Pandas ),标签包含它们的标签,但不知何故,当我将数据拟合到模型时,val_loss 和 val
我正在尝试对图像进行分类,无论它们是猫、狗还是 Pandas 。数据包含所有图像(猫 + 狗 + Pandas ),标签包含它们的标签,但不知何故,当我将数据拟合到模型时,val_loss 和 val
我正在用keras训练模型,并且在fit_generator函数的回调中遇到错误。我总是跑到纪元3rd并收到此错误 annotation_path = 'train2.txt' log_dir
我正在训练神经网络并得到以下输出。 loss 和 val_loss 都在减少,这让我很高兴。然而,val_acc 保持不变。这能有什么原因呢?我的数据非常不平衡,但我通过 sklearn comput
就像这样: x = keras.layers.Input(shape=(3,)) y = keras.layers.Dense(5)(x) G = keras.models.Model(x, y,na
我在 Keras 中记录“val_loss”和“val_acc”时遇到问题。 'loss' 和 'acc' 很容易,因为它们总是记录在 model.fit 的历史记录中。 如果在 fit 中启用验证,
我正在尝试使用带有 tensorflow 后端的 keras 自定义 resnet50。然而,在训练后,我的 val_loss 不断增加。尝试不同的学习率和批量大小并不能解决问题。 使用不同的预处理方
我实现了一个数据生成器,将我的训练数据分成 256 个小批量,以避免内存错误。它在训练数据上运行,但在每个时期结束时不显示验证损失和验证准确性。我还将数据生成器应用于验证数据并定义了验证步骤。我不知道
我创建了一个用于序列分类(二进制)的 LSTM 网络,其中每个样本有 25 个时间步长和 4 个特征。以下是我的keras网络拓扑: 上图,Dense层之后的激活层使用了softmax函数。我使用 b
我是 Keras 的新手,对如何理解我的模型结果有一些疑问。这是我的结果:(为方便起见,我只在每个 epoch 之后粘贴 loss acc val_loss val_acc) 对 4160 个样本进行
我是一名优秀的程序员,十分优秀!