- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
如何使用 SciPy 的曲线拟合函数获得预测区间/预测带?
更具体地说,如何获得通常用于下降曲线分析的双曲曲线的这些预测带?
如有任何帮助,我们将不胜感激。
import pandas as pd
import numpy as np
from datetime import timedelta
from scipy.optimize import curve_fit
def hyperbolic_equation(t, qi, b, di):
return qi/((1.0+b*di*t)**(1.0/b))
df1 = pd.DataFrame({ 'cumsum_days': [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],
'prod': [800, 900, 1200, 700, 600,
550, 500, 650, 625, 600,
550, 525, 500, 400, 350]})
qi = max(df1['prod'])
#Hyperbolic curve fit the data to get best fit equation
popt_hyp, pcov_hyp = curve_fit(hyperbolic_equation, df1['cumsum_days'], df1['prod'],bounds=(0, [qi,1,20]))
#Passing t to estimate the coefficients:
def fitted_hyperbolic_equation(t):
return popt_hyp[0]/((1.0+popt_hyp[1]*popt_hyp[2]*t)**(1.0/popt_hyp[1]))
#Creating future time to predict on:
df2 = pd.DataFrame({ 'future_days': [16,17,18,19,20]})
fitted_hyperbolic_equation(df2.future_days)
16 388.259631
17 368.389649
18 349.754534
19 332.264306
20 315.836485
我有我的 future 值,但如何使用 SciPy 生成置信/预测带 (95%)?任何帮助将不胜感激。
最佳答案
我不确定我是否完全理解,但我认为您是在要求曲线拟合模型的预测值具有不确定性。
我建议使用lmfit
(免责声明:我是作者),因为它提供了执行此类计算的方法。恐怕你的模型和数据不太匹配,不确定性很大
使用lmfit
并使用普通的numpy
数组而不是pandas
数据帧(这些可以使用,但它们在这里会分散注意力 -确实需要 numpy 数组),您的分析可能如下所示:
import numpy as np
from lmfit import Model
import matplotlib.pyplot as plt
cumsum_days = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
prod = np.array([800, 900, 1200, 700, 600, 550, 500, 650, 625, 600, 550,
525, 500, 400, 350])
# plot data
plt.plot(cumsum_days, prod, 'bo', label='data')
def hyperbolic_equation(t, qi, b, di):
return qi/((1.0+b*di*t)**(1.0/max(b, 1.e-50)))
# build Model
hmodel = Model(hyperbolic_equation)
# create lmfit Parameters, named from the arguments of `hyperbolic_equation`
# note that you really must provide initial values.
params = hmodel.make_params(qi=1000, b=0.5, di=0.1)
# set bounds on parameters
params['qi'].min=0
params['b'].min=0
params['di'].min=0
# do fit, print resulting parameters
result = hmodel.fit(prod, params, t=cumsum_days)
print(result.fit_report())
# plot best fit: not that great of fit, really
plt.plot(cumsum_days, result.best_fit, 'r--', label='fit')
# calculate the (1 sigma) uncertainty in the predicted model
# and plot that as a confidence band
dprod = result.eval_uncertainty(result.params, sigma=1)
plt.fill_between(cumsum_days,
result.best_fit-dprod,
result.best_fit+dprod,
color="#AB8888",
label='uncertainty band of fit')
# now evaluate the model for other values, predicting future values
future_days = np.array([16,17,18,19,20])
future_prod = result.eval(t=future_days)
plt.plot(future_days, future_prod, 'k--', label='prediction')
# ...and calculate the 1-sigma uncertainty in the future prediction
# for 95% confidence level, you'd want to use `sigma=2` here:
future_dprod = result.eval_uncertainty(t=future_days, sigma=1)
print("### Prediction\n# Day Prod Uncertainty")
for day, prod, eps in zip(future_days, future_prod, future_dprod):
print(" {:.1f} {:.1f} +/- {:.1f}".format(day, prod, eps))
plt.fill_between(future_days,
future_prod-future_dprod,
future_prod+future_dprod,
color="#ABABAB",
label='uncertainty band of prediction')
plt.legend(loc='lower left')
plt.show()
这将打印出结果拟合统计数据和参数值
[[Model]]
Model(hyperbolic_equation)
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 21
# data points = 15
# variables = 3
chi-square = 238946.482
reduced chi-square = 19912.2068
Akaike info crit = 151.139170
Bayesian info crit = 153.263321
[[Variables]]
qi: 993.608482 +/- 163.710950 (16.48%) (init = 1000)
b: 0.22855837 +/- 2.07615175 (908.37%) (init = 0.5)
di: 0.06551315 +/- 0.06250023 (95.40%) (init = 0.1)
[[Correlations]] (unreported correlations are < 0.100)
C(b, di) = 0.963
C(qi, di) = 0.888
C(qi, b) = 0.771
### Prediction
# Day Prod Uncertainty
16.0 388.258 +/- 1080.106
17.0 368.387 +/- 1106.336
18.0 349.752 +/- 1130.091
19.0 332.261 +/- 1151.634
20.0 315.833 +/- 1171.196
并给出如下图:
在您的问题中,您没有通过统计或图形方式检查拟合的质量。真的,你会想要这样做。
您还使用了curve_fit
,但没有提供初始值。尽管没有底层拟合例程会支持这一点,并且都需要显式初始值,但 curve_fit
允许在没有警告或理由的情况下这样做,并断言所有起始值都将为 1.0
。实际上,您必须提供初始值。
关于python - 双曲 Curve_Fit 的预测区间 - SciPy,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59889441/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!