- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我需要使用 NLTK 包计算某些语料库中的单词数(单词出现次数)。
这是我的语料库:
corpus = PlaintextCorpusReader('C:\DeCorpus', '.*')
以下是我尝试获取每个文档的总字数的方法:
cfd_appr = nltk.ConditionalFreqDist(
(textname, num_appr)
for textname in corpus.fileids()
for num_appr in [len(w) for w in corpus.raw(fileids=textname).replace("\r", " ").replace("\n", " ").split()])
(我手动将字符串拆分为单词,不知何故它比使用 corpus.words()
效果更好,但问题仍然相同,所以它无关紧要)。一般来说,这会完成相同(错误)的工作:
cfd_appr = nltk.ConditionalFreqDist(
(textname, num_appr)
for textname in corpus.fileids()
for num_appr in [len(w) for w in corpus.words(fileids=textname)])
这是我输入 cfd.appr.tabulate()
得到的结果:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
2022.12.06_Bild 2.txt 3 36 109 40 47 43 29 29 33 23 24 12 8 6 4 2 2 0 0 0 0
2022.12.06_Bild 3.txt 2 42 129 59 57 46 46 35 22 24 17 21 13 5 6 6 2 2 2 0 0
2022.12.06_Bild 4.txt 3 36 106 48 43 32 38 30 19 39 15 14 16 6 5 8 3 2 3 1 0
2022.12.06_Bild 5.txt 1 55 162 83 68 72 46 24 34 38 27 16 12 8 8 5 9 3 1 5 1
2022.12.06_Bild 6.txt 7 69 216 76 113 83 73 52 49 42 37 20 19 9 7 5 3 6 3 0 1
2022.12.06_Bild 8.txt 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
但这些是不同长度的单词数。我需要的只是这个(只有一种类型的项目(文本)应该按字数计算):
2022.12.06_Bild 2.txt 451.0
2022.12.06_Bild 3.txt 538.0
2022.12.06_Bild 4.txt 471.0
2022.12.06_Bild 5.txt 679.0
2022.12.06_Bild 6.txt 890.0
2022.12.06_Bild 8.txt 3.0
dtype: float64
即不同长度的所有单词的总和(或使用 DataFrame(cfd_appr).transpose().sum(axis=1)
组成的列的总和。(顺便说一句,如果有某种方法为此列设置名称,这也是一个解决方案,但 .rename({None: 'W. appear.'}, axis='columns')
是不起作用,并且解决方案通常不够清晰。
所以,我需要的是:
1
2022.12.06_Bild 2.txt 451.0
2022.12.06_Bild 3.txt 538.0
2022.12.06_Bild 4.txt 471.0
2022.12.06_Bild 5.txt 679.0
2022.12.06_Bild 6.txt 890.0
2022.12.06_Bild 8.txt 3.0
非常感谢您的帮助!
最佳答案
让我们首先尝试使用臭名昭著的 BookCorpus 复制您的表。 ,目录结构:
/books_in_sentences
books_large_p1.txt
books_large_p2.txt
在代码中:
from nltk.corpus import PlaintextCorpusReader
from nltk import ConditionalFreqDist
from nltk import word_tokenize
from collections import Counter
import pandas as pd
corpus = PlaintextCorpusReader('books_in_sentences/', '.*')
cfd_appr = ConditionalFreqDist(
(textname, num_appr)
for textname in corpus.fileids()
for num_appr in [len(w) for w in
word_tokenize(corpus.raw(fileids=textname))])
然后是 Pandas 咀嚼部分:
# Idiom to convert a FreqDist / ConditionalFreqDist into pd.DataFrame.
df = pd.DataFrame([dict(Counter(freqdist))
for freqdist in cfd_appr.values()],
index=cfd_appr.keys())
# Fill in the not-applicable with zeros.
df = df.fillna(0).astype(int)
# If necessary, sort order of columns and add accordingly.
df = df.sort_values(list(df))
# Sum all columns per row -> pd.Series
counts_per_row = df.sum(axis=1)
最后,访问索引系列,例如:
print('books_large_p1.txt', counts_per_row['books_large_p1.txt'])
<小时/>
我鼓励使用上述解决方案,以便您可以使用 DataFrame 进一步操作数字,但如果您真正需要的只是每行的列数,那么请尝试以下操作。
如果需要避免 pandas 并直接使用 CFD 中的值,那么您必须使用 ConditionalFreqDist.values()
并仔细迭代它。
如果我们这样做:
>>> list(cfd_appr.values())
[FreqDist({3: 6, 6: 5, 1: 5, 9: 4, 4: 4, 2: 3, 8: 2, 10: 2, 7: 1, 14: 1}),
FreqDist({4: 10, 3: 9, 1: 5, 7: 4, 2: 4, 5: 3, 6: 3, 11: 1, 9: 1})]
我们将看到一个 FreqDist 列表,每个列表都对应于键(在本例中为文件名):
>>> list(cfd_appr.keys())
['books_large_p1.txt', 'books_large_p2.txt']
因为我们知道FreqDist is a subclass of collections.Counter object ,如果我们将每个 Counter 对象的值相加,我们将得到:
>>> [sum(fd.values()) for fd in cfd_appr.values()]
[33, 40]
其输出与上面的df.sum(axis=1)
相同的值。
所以把它们放在一起:
>>> dict(zip(cfd_appr.keys(), [sum(fd.values()) for fd in cfd_appr.values()]))
{'books_large_p1.txt': 33, 'books_large_p2.txt': 40}
关于python - 使用 Python 中的 NLTK 条件频率分布计算语料库中的单词总数(新手),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60295233/
NLTK 感知器标记器的标记集是什么?预训练模型使用的语料库是什么? 我试图从NLTK网站上找到官方信息。但他们没有那个。 最佳答案 来自 https://github.com/nltk/nltk/p
我无法理解这两者之间的区别。不过,我了解到word_tokenize将Penn-Treebank用于标记化目的。但TweetTokenizer上的任何内容都不可用。对于哪种类型的数据,我应该使用Twe
我正在学习 NLTK 和我的 mac 工作正常,除非我在 FreqDist() 上遇到问题。 (我看到另一个关于 FreqDist() 的问题,但他收到了不同的错误消息。TypeError: unha
我尝试了正则表达式词干分析器,但我得到了数百个不相关的标记。我只是对“播放”词干感兴趣。这是我正在使用的代码: import nltk from nltk.book import * f = open
我正在尝试使用 NLTK 命名实体标记器来识别各种命名实体。在使用 Python 进行自然语言处理一书中,他们提供了常用命名实体的列表(表 7.4,如果有人好奇的话),其中包括:日期 6 月,2008
我有很多文本数据,我想进行分类。我逐 block 递增地获取这些数据(例如 500 个样本)。我想用这些 block 在 NLTK 中对 NaiveBayesClassifier 进行训练,但要进行零
我在尝试运行实体提取功能时遇到问题。我相信这是版本差异。以下工作示例在 2.0.4 中运行,但不在 3.0 中运行。我确实将一个函数调用:batch_ne_chunk 更改为:nltk.ne_chun
我正在使用 docker 运行一个使用 nltk、languagetool 等的 NLP 系统... 当我使用 docker-compose build --build-arg env=dev我收到警
我正在检查 NLTK 的命名实体识别功能。是否可以找出提取出的哪个关键字与原文最相关?另外,是否可以知道提取的关键字的类型(人/组织)? 最佳答案 如果你有一个训练有素的标注器,你可以先标注你的文本,
我用过这个代码: # Step 1 : TOKENIZE from nltk.tokenize import * words = word_tokenize(text) # Step 2 : POS
当我运行 nltk.gaac.demo() 时 如果我错过了什么,你能帮我吗?我收到以下错误。 我使用的是nltk 3.0.1 Python 3.4.1 (v3.4.1:c0e311e010fc, M
我刚刚读了一篇关于如何使用 MALLET 进行主题建模的精彩文章,但我在网上找不到任何将 MALLET 与 NLTK 进行比较的内容,而我已经有过一些经验。 它们之间的主要区别是什么? MALLET
我试过这个,但它不起作用 from nltk.corpus import stopwords stopwords_list = stopwords.words('arabic') print(stop
我正在构建一个同时使用 NLTK 和 Spacy 的应用程序,并通过 Poetry 管理依赖项。我可以通过将此行添加到我的 pyproject.toml 来下载 Spacy 数据。下 [tool.po
我正在尝试使用 RegexpTokenizer 对文本进行分词。 代码: from nltk.tokenize import RegexpTokenizer #from nltk.tokenize i
我很好奇是否有人熟悉使用 NLTK's BLEU score calculation 之间的区别和 SacreBLEU library . 特别是,我使用了两个库的句子 BLEU 分数,对整个数据集进
我正在使用 nltk.word_tokenize用于标记一些包含编程语言、框架等的句子,这些句子被错误标记。 例如: >>> tokenize.word_tokenize("I work with C
我无法理解两者之间的区别。不过,我开始知道 word_tokenize 使用 Penn-Treebank 进行标记化。但是 TweetTokenizer 上没有任何内容可用。对于哪种数据,我应该使用
我需要对多种语言的文本进行名称实体提取:西类牙语、葡萄牙语、希腊语、捷克语、中文。 是否有这两个功能的所有支持语言的列表?是否有使用其他语料库的方法,以便可以包含这些语言? 最佳答案 默认情况下,这两
我是 python 的新手并使用 nltk,所以实际上我有一个非常基本的问题,但在任何地方都找不到答案。 我想知道什么时候在 nltk 模块的函数之前使用 nltk.。我正在处理一些任务,在某些情况下
我是一名优秀的程序员,十分优秀!