- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
您好,我正在尝试使用 scipy.optimize.fmin 来最小化函数。但事情进展不顺利,因为我的计算似乎发散而不是收敛,并且我收到了错误。我尝试修复容差,但不起作用。这是我的代码(主程序):
import sys,os
import numpy as np
from math import exp
import scipy
from scipy.optimize import fmin
from carlo import *
A=real()
x_r=0.11245
x_i=0.14587
#C=A.minim
part_real=0.532
part_imag=1.2
R_0 = fmin(A.minim,[part_real,part_imag],xtol=0.0001)
还有类(class):
import sys,os
import numpy as np
import random, math
import matplotlib.pyplot as plt
import cmath
#import pdb
#pdb.set_trace()
class real:
def __init__(self):
self.nmodes = 4
self.L_ch = 1
self.w = 2
def minim(self,p):
x_r=p[0]
x_i=p[1]
x=complex(x_r,x_i)
self.a=complex(3,4)*(3*np.exp(1j*self.L_ch))
self.T=np.array([[0.0,2.0*self.a],[(0.00645+(x)**2), 4.3*x**2]])
self.Id=np.array([[1,0],[0,1]])
self.disp=np.linalg.det(self.T-self.Id)
print self.disp
return self.disp
错误是:
(-2.16124712985-8.13819476595j)
/usr/local/lib/python2.7/site-packages/scipy/optimize/optimize.py:438: ComplexWarning: Casting complex values to real discards the imaginary part
fsim[0] = func(x0)
(-1.85751684826-8.95377303768j)
/usr/local/lib/python2.7/site-packages/scipy/optimize/optimize.py:450: ComplexWarning: Casting complex values to real discards the imaginary part
fsim[k + 1] = f
(-2.79592712985-8.13819476595j)
(-3.08484130014-7.36240080015j)
(-3.68788935914-6.62639114029j)
/usr/local/lib/python2.7/site-packages/scipy/optimize/optimize.py:475: ComplexWarning: Casting complex values to real discards the imaginary part
fsim[-1] = fxe
(-2.62046851255e+87-1.45013007728e+88j)
(-4.037931857e+87-2.2345341712e+88j)
(-7.45017628087e+87-4.12282179854e+88j)
(-1.14801242605e+88-6.35293780534e+88j)
(-2.11813751435e+88-1.17214723347e+89j)
Warning: Maximum number of function evaluations has been exceeded.
实际上我不明白为什么计算会发散,也许我必须使用其他东西而不是使用 fmin 来最小化?有人有主意吗?非常感谢。
最佳答案
尝试优化绝对值而不是复数值。这给了我不错的结果。
f = lambda x: abs(A.minim(x))
R_0 = fmin(f,[part_real,part_imag],xtol=0.0001)
我猜 fmin 不能很好地处理复杂的值。
关于python - 如何使用好 scipy.optimize.fmin,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21863227/
我在使用 cx_freeze 和 scipy 时无法编译 exe。特别是,我的脚本使用 from scipy.interpolate import griddata 构建过程似乎成功完成,但是当我尝试
是否可以通过函数在 scipy 中定义一个稀疏矩阵,而不是列出所有可能的值?在文档中,我看到可以通过以下方式创建稀疏矩阵 There are seven available sparse matrix
SciPy为非线性最小二乘问题提供了两种功能: optimize.leastsq()仅使用Levenberg-Marquardt算法。 optimize.least_squares()允许我们选择Le
SciPy 中的求解器能否处理复数值(即 x=x'+i*x")?我对使用 Nelder-Mead 类型的最小化函数特别感兴趣。我通常是 Matlab 用户,我知道 Matlab 没有复杂的求解器。如果
我有看起来像这样的数据集: position number_of_tag_at_this_position 3 4 8 6 13 25 23 12 我想对这个数据集应用三次样条插值来插值标签密度;为此
所以,我正在处理维基百科转储,以计算大约 5,700,000 个页面的页面排名。这些文件经过预处理,因此不是 XML 格式。 它们取自 http://haselgrove.id.au/wikipedi
Scipy 和 Numpy 返回归一化的特征向量。我正在尝试将这些向量用于物理应用程序,我需要它们不被标准化。 例如a = np.matrix('-3, 2; -1, 0') W,V = spl.ei
基于此处提供的解释 1 ,我正在尝试使用相同的想法来加速以下积分: import scipy.integrate as si from scipy.optimize import root, fsol
这很容易重新创建。 如果我的脚本 foo.py 是: import scipy 然后运行: python pyinstaller.py --onefile foo.py 当我启动 foo.exe 时,
我想在我的代码中使用 scipy.spatial.distance.cosine。如果我执行类似 import scipy.spatial 或 from scipy import spatial 的操
Numpy 有一个基本的 pxd,声明它的 c 接口(interface)到 cython。是否有用于 scipy 组件(尤其是 scipy.integrate.quadpack)的 pxd? 或者,
有人可以帮我处理 scipy.stats.chisquare 吗?我没有统计/数学背景,我正在使用来自 https://en.wikipedia.org/wiki/Chi-squared_test 的
我正在使用 scipy.odr 拟合数据与权重,但我不知道如何获得拟合优度或 R 平方的度量。有没有人对如何使用函数存储的输出获得此度量有建议? 最佳答案 res_var Output 的属性是所谓的
我刚刚下载了新的 python 3.8,我正在尝试使用以下方法安装 scipy 包: pip3.8 install scipy 但是构建失败并出现以下错误: **Failed to build sci
我有 my own triangulation algorithm它基于 Delaunay 条件和梯度创建三角剖分,使三角形与梯度对齐。 这是一个示例输出: 以上描述与问题无关,但对于上下文是必要的。
这是一个非常基本的问题,但我似乎找不到好的答案。 scipy 到底计算什么内容 scipy.stats.norm(50,10).pdf(45) 据我了解,平均值为 50、标准差为 10 的高斯中像 4
我正在使用 curve_fit 来拟合一阶动态系统的阶跃响应,以估计增益和时间常数。我使用两种方法。第一种方法是在时域中拟合从函数生成的曲线。 # define the first order dyn
让我们假设 x ~ Poisson(2.5);我想计算类似 E(x | x > 2) 的东西。 我认为这可以通过 .dist.expect 运算符来完成,即: D = stats.poisson(2.
我正在通过 OpenMDAO 使用 SLSQP 来解决优化问题。优化工作充分;最后的 SLSQP 输出如下: Optimization terminated successfully. (Exi
log( VA ) = gamma - (1/eta)log[alpha L ^(-eta) + 测试版 K ^(-eta)] 我试图用非线性最小二乘法估计上述函数。我为此使用了 3 个不同的包(Sc
我是一名优秀的程序员,十分优秀!