- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我不是调查方法学家或人口统计学家,但我是 Thomas Lumley 的 R 调查包的狂热粉丝。我一直在处理一个相对较大的复杂调查数据集,即医疗保健成本和利用项目 (HCUP) 国家急诊部样本 (NEDS)。正如医疗保健研究和质量机构所描述的那样,它是“来自 30 个州的 947 家医院的急诊就诊的出院数据,接近美国医院急诊的 20% 分层样本”
2006 年至 2012 年的完整数据集包含 198,102,435 个观测值。我已将数据分割为 40,073,358 次与外伤相关的出院,其中包含 66 个变量。对这些数据运行即使是简单的调查程序也需要非常长的时间。我曾尝试使用 multicore 将 RAM(2013 年末 Mac Pro,3.7GHz 四核,128GB(!)内存)投入其中如果可用,subsetting ,使用 out-of-memory DBMS喜欢 MonetDB .基于设计的调查程序仍然需要数小时。有时好几个小时。一些适度复杂的分析需要 15 个小时以上。我猜大部分计算工作都与必须是庞大的协方差矩阵有关?
正如人们所料,处理原始数据的速度要快几个数量级。更有趣的是,根据程序,对于如此大的数据集,未经调整的估计值可能与调查结果非常接近。 (见下面的例子)基于设计的结果显然更精确和更受欢迎,但几个小时的计算时间与几秒钟相比,对于增加的精度来说是一个不可忽视的成本。它开始看起来像是绕着街区走很长一段路。
有没有人有这方面的经验?有没有办法优化大型数据集的 R 调查程序?也许更好地利用并行处理?贝叶斯方法是否使用 INLA或 Hamiltonian像 Stan 这样的方法是一种可能的解决方案吗?或者,当调查规模大且具有足够的代表性时,一些未经调整的估计值,尤其是相对测量值,是否可以接受?
以下是几个近似调查结果的未经调整的估计示例。
在第一个示例中,内存中的 svymean 用了不到一个小时,内存不足需要 3 多个小时。直接计算耗时不到一秒。更重要的是,点估计(svymean 为 34.75,未调整为 34.77)以及标准误差(0.0039 和 0.0037)非常接近。
# 1a. svymean in memory
svydes<- svydesign(
id = ~KEY_ED ,
strata = ~interaction(NEDS_STRATUM , YEAR), note YEAR interaction
weights = ~DISCWT ,
nest = TRUE,
data = inj
)
system.time(meanAGE<-svymean(~age, svydes, na.rm=T))
user system elapsed
3082.131 143.628 3208.822
> meanAGE
mean SE
age 34.746 0.0039
# 1b. svymean out of memory
db_design <-
svydesign(
weight = ~discwt , weight variable column
nest = TRUE , whether or not psus are nested within strata
strata = ~interaction(neds_stratum , yr) , stratification variable column
id = ~key_ed ,
data = "nedsinj0612" , table name within the monet database
dbtype = "MonetDBLite" ,
dbname = "~/HCUP/HCUP NEDS/monet" folder location
)
system.time(meanAGE<-svymean(~age, db_design, na.rm=T))
user system elapsed
11749.302 549.609 12224.233
Warning message:
'isIdCurrent' is deprecated.
Use 'dbIsValid' instead.
See help("Deprecated")
mean SE
age 34.746 0.0039
# 1.c unadjusted mean and s.e.
system.time(print(mean(inj$AGE, na.rm=T)))
[1] 34.77108
user system elapsed
0.407 0.249 0.653
sterr <- function(x) sd(x, na.rm=T)/sqrt(length(x)) # write little function for s.e.
system.time(print(sterr(inj$AGE)))
[1] 0.003706483
user system elapsed
0.257 0.139 0.394
# 2.a svyby .. svymean
system.time(AGEbyYear<-svyby(~age, ~yr, db_design, svymean, na.rm=T, vartype = c( 'ci' , 'se' )))
user system elapsed
4600.050 376.661 6594.196
yr age se ci_l ci_u
2006 2006 33.83112 0.009939669 33.81163 33.85060
2007 2007 34.07261 0.010055909 34.05290 34.09232
2008 2008 34.57061 0.009968646 34.55107 34.59014
2009 2009 34.87537 0.010577461 34.85464 34.89610
2010 2010 35.31072 0.010465413 35.29021 35.33124
2011 2011 35.33135 0.010312395 35.31114 35.35157
2012 2012 35.30092 0.010313871 35.28071 35.32114
# 2.b tapply ... mean
system.time(print(tapply(inj$AGE, inj$YEAR, mean, na.rm=T)))
2006 2007 2008 2009 2010 2011 2012
33.86900 34.08656 34.60711 34.81538 35.27819 35.36932 35.38931
user system elapsed
3.388 1.166 4.529
system.time(print(tapply(inj$AGE, inj$YEAR, sterr)))
2006 2007 2008 2009 2010 2011 2012
0.009577755 0.009620235 0.009565588 0.009936695 0.009906659 0.010148218 0.009880995
user system elapsed
3.237 0.990 4.186
# 3.a svytotal
system.time(print(svytotal(~adj_cost, svydes, na.rm=T)))
total SE
adj_cost 9.975e+10 26685092
user system elapsed
10005.837 610.701 10577.755
# 3.b "direct" calculation
SurvTot<-function(x){
N <- sum(1/svydes$prob)
m <- mean(x, na.rm = T)
total <- m * N
return(total)
}
> system.time(print(SurvTot(inj$adj_cost)))
[1] 1.18511e+11
user system elapsed
0.735 0.311 0.989
最佳答案
对于庞大的数据集,线性化设计 ( svydesign
) 比复制设计 ( svrepdesign
) 慢得多。查看 survey::as.svrepdesign
中的加权函数并使用其中之一直接进行复制设计。您不能为此任务使用线性化。你甚至可能最好不要使用 as.svrepdesign
而是使用其中的功能。
举个例子,使用 cluster=
, strata=
, 和 fpc=
直接进入重复加权设计,见
https://github.com/ajdamico/asdfree/blob/master/Censo%20Demografico/download%20and%20import.R#L405-L429
请注意,您还可以在此处查看逐分钟速度测试(每个事件的时间戳)http://monetdb.cwi.nl/testweb/web/eanthony/
还要注意的是replicates=
论点几乎 100% 负责设计运行的速度。所以也许做两种设计,一种用于系数(只有几个重复),另一种用于 SE(尽可能多)。以交互方式运行您的系数并在白天优化您需要的数字,然后让需要 SE 计算的较大流程在夜间运行
关于r - R中用于大型复杂调查数据集的方法?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35210712/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!