gpt4 book ai didi

Python:队列和线程的阻塞问题

转载 作者:行者123 更新时间:2023-12-01 04:44:17 28 4
gpt4 key购买 nike

我在 Python 队列和线程方面遇到了一个奇怪的问题。

我有一个用于安排作业的 web.py 应用程序,因此有一个 global incoming_queue = Queue(maxsize=10) .

我有一个 url 和一个添加到队列的 GET 处理程序(我还添加到列表,因为我需要知道队列的内容):

class ProcessRequest:
def GET(self):
global incoming_queue, incoming_jobs
if incoming_queue.full():
print "Queue is full"
return web.InternalError("Queue is full, please try submitting later.")
else:
job_id = getNextInt()
req_folder = "req" + str(job_id)
incoming_queue.put(job_id)
incoming_jobs.append(job_id)
print "Received request, assigning Drop Folder {0}".format(req_folder)
web.header('Drop-Folder', req_folder)
return req_folder

我还运行一个线程来处理作业:

def processJobs():
global incoming_queue, incoming_jobs, current_job, finished_jobs
while True:
print "Job processor thread active"
current_job = incoming_queue.get(block=True)
incoming_jobs.remove(current_job)
print "Processing job {0}".format(current_job)
# Do stuff here
print "Job processor thread ready for next job"
print "Job processor thread finished"

启动程序时我运行以下命令:

if __name__ == '__main__':
job_processor_thread = threading.Thread(target=processJobs)
job_processor_thread.start()
app.run()

然后我调用添加到队列中的 URL。使用另一个 url,我能够检查该项目是否确实已添加到列表中,并将以下代码添加到原始 url 处理程序 ( print incoming_queue.get() ) 的 GET 方法中,我验证了该项目确实已添加到队列。

作业处理线程刚刚阻塞在 current_job = incoming_queue.get(block=True) 。这是有意的。但是,即使将项目添加到队列中,它也永远不会解除阻塞。它只是永远被阻止。

这是为什么呢?这几乎就像它有一个队列对象的单独副本。

编辑:根据 Martin 的建议,我决定尝试查看 GET 方法和 processJobs 方法中引用了哪些对象。

processJobs(): <Queue.Queue instance at 0x7f32b6958a70> GET(): <Queue.Queue instance at 0x7f32b5ec5368>

是的,它们是不同的,但是为什么呢?

编辑#2:以下是整个脚本供引用:

'''
Created on Apr 20, 2015

@author: chris
'''
import web
import time
import threading
import json
from Queue import Queue, Empty
import os

urls = (
'/request', 'ProcessRequest',
'/status', 'CheckStatus',
)

current_job_thread = threading.Thread()

app = web.application(urls, globals())

incoming_jobs = []
incoming_queue = Queue(maxsize=10)

current_job = None

finished_jobs = []

next_int = 0

def getNextInt():
global next_int, incoming_queue
the_int = next_int
next_int += 1
return the_int

class ProcessRequest:
def GET(self):
global incoming_queue, incoming_jobs
if incoming_queue.full():
print "Queue is full"
return web.InternalError("Queue is full, please try submitting later.")
else:
job_id = getNextInt()
req_folder = "req" + str(job_id)
print incoming_queue
incoming_queue.put(job_id)
incoming_jobs.append(job_id)
print "Received request, assigning Drop Folder {0}".format(req_folder)
web.header('Drop-Folder', req_folder)
return req_folder

class CheckStatus:
def GET(self):
global incoming_queue, incoming_jobs, current_job, finished_jobs
if str(web.input().jobid) == 'all':
# Construct JSON to return
web.header('Content-Type', 'application/json')
return {'In Queue': incoming_jobs,
'Currently Processing': current_job,
'Finished': finished_jobs
}
try:
jobid = int(web.input().jobid)
except ValueError:
jobid = -1
print jobid
if jobid in finished_jobs:
file_string = "results{0}.json".format(jobid)
try:
json_file = open(file_string)
finished_jobs.remove(jobid)
os.remove(file_string)
web.header('Process-Status', 'Complete')
web.header('Content-Type', 'application/json')
return json.load(json_file)
except IOError:
web.header('Process-Status', 'Complete, but failed to retrieve file, saving')
return ""

elif jobid is current_job:
web.header('Process-Status', 'Processing')
elif jobid in incoming_jobs:
web.header('Process-Status', 'In Queue')
else:
web.header('Process-Status', 'Unknown')
return ""

def processJobs():
global incoming_queue, incoming_jobs, current_job, finished_jobs
while True:
print incoming_queue
print "Job processor thread active"
current_job = incoming_queue.get(block=True)
incoming_jobs.remove(current_job)
print "Processing job {0}".format(current_job)
# Do magical Spark stuff here
time.sleep(10) # Simulate a Spark Job
finished_jobs.append(current_job)
current_job = None
print "Job processor thread ready for next job"
print "Job processor thread finished"

if __name__ == '__main__':
job_processor_thread = threading.Thread(target=processJobs)
job_processor_thread.start()
app.run()

最佳答案

您可以通过打印对象来测试您的假设,即它们是不同的队列:

def processJobs():
global incoming_queue, incoming_jobs, current_job, finished_jobs
print incoming_queue # print something like <__main__.Queue instance at 0x7f556d93f830>


class ProcessRequest:
def GET(self):
global incoming_queue, incoming_jobs
print incoming_queue # print something like <__main__.Queue instance at 0x7f556d93f830>

确保内存地址 (0x7f556d93f830) 匹配。

您从未提及是否使用框架来处理 Web 请求,因此该框架可能正在执行一些 fork ,导致您的队列成为单独的实例。

顺便说一句,您可能需要考虑将 Redis 或 beanstalk 作为队列 - 这些使用起来非常简单,并且即使您重新启动应用程序,您的队列也会持续存在。

关于Python:队列和线程的阻塞问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29834257/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com