gpt4 book ai didi

python - 评估 statsmodels ols 拟合的特定类别的斜率和误差

转载 作者:行者123 更新时间:2023-12-01 04:39:55 24 4
gpt4 key购买 nike

我有一个数据帧df,其中包含以下字段:weightlengthanimal。前 2 个是连续变量,而 animal 是一个分类变量,其值为 catdogsnake .

我想估计体重和长度之间的关系,但这需要以动物的类型为条件,因此我将长度变量与animal分类变量进行交互。

model = ols(formula='weight ~ length * animal', data=df)
results = model.fit()

如何以编程方式提取重量和长度之间关系的斜率,例如蛇?我了解如何手动执行此操作:将 length 的系数添加到 animal[T.snake]:length 的系数中。但这有点麻烦和手动,并且需要我专门处理基本情况,所以我想自动提取这些信息。

此外,我想估计这个斜率上的误差。我相信我了解如何通过结合标准误差和协方差来计算它(更准确地说,执行计算 here )。但这比上面的更麻烦,我同样想知道是否有提取此信息的快捷方式。

我的手动计算方法如下。

编辑(06/22/2015):下面我的原始代码中似乎存在计算错误的错误。 user333700 的答案中计算的标准误差与我计算的不同,但我没有投入任何时间来找出原因。

def get_contained_animal(animals, p):
# This relies on parameters of the form animal[T.snake]:length.
for a in animals:
if a in p:
return a
return None

animals = ['cat', 'dog', 'snake']
slopes = {}
errors = {}
for animal in animals:
slope = 0.
params = []
# If this param is related to the length variable and
# the animal in question, add it to the slope.
for param, val in results.params.iteritems():
ac = get_contained_animal(animals, param)
if (param == 'length' or
('length' in param and
ac is None or ac == animal)):
params.append(param)
slope += val

# Calculate the overall error by adding standard errors and
# covariances.
tot_err = 0.
for i, p1 in enumerate(params):
tot_err += results.bse[p1]*results.bse[p1]
for j, p2 in enumerate(params[i:]):
# add covariance of these parameters
tot_err += 2*results.cov_params()[p1][p2]

slopes[animal] = slope
errors[animal] = tot_err**0.5

这段代码可能看起来有点矫枉过正,但在我的实际用例中,我有一个连续变量与两个单独的分类变量交互,每个变量都有大量类别(以及模型中我需要忽略的其他术语)用于这些目的)。

最佳答案

非常简短的背景:

一般的问题是,如果我们改变解释变量,保持其他解释变量固定或对这些变量取平均值,预测会如何变化。

在非线性离散模型中,有一种特殊的 Margins 方法可以计算这一点,尽管它没有针对分类变量的变化实现。

在线性模型中,预测和预测的变化只是估计参数的线性函数,我们可以(错误)使用t_test来计算效果、其标准误差和置信区间对于我们来说。

(旁白:statsmodels 正在开发更多辅助方法,使预测和利润计算变得更容易,并且很可能在今年晚些时候推出。)

作为以下代码的简要说明:

  • 我举了一个类似的例子。
  • 我为每种动物类型定义长度 = 1 或 2 的解释变量
  • 然后,我计算这些解释变量的差异
  • 这定义了可在 t_test 中使用的参数的线性组合或对比。

最后,我与预测的结果进行比较,以检查我没有犯任何明显的错误。 (我认为这是正确的,但我写得很快。)

import numpy as np
import pandas as pd

from statsmodels.regression.linear_model import OLS

np.random.seed(2)
nobs = 20
animal_names = np.array(['cat', 'dog', 'snake'])
animal_idx = np.random.random_integers(0, 2, size=nobs)
animal = animal_names[animal_idx]
length = np.random.randn(nobs) + animal_idx
weight = np.random.randn(nobs) + animal_idx + length

data = pd.DataFrame(dict(length=length, weight=weight, animal=animal))

res = OLS.from_formula('weight ~ length * animal', data=data).fit()
print(res.summary())


data_predict1 = data = pd.DataFrame(dict(length=np.ones(3), weight=np.ones(3),
animal=animal_names))

data_predict2 = data = pd.DataFrame(dict(length=2*np.ones(3), weight=np.ones(3),
animal=animal_names))

import patsy
x1 = patsy.dmatrix('length * animal', data_predict1)
x2 = patsy.dmatrix('length * animal', data_predict2)

tt = res.t_test(x2 - x1)
print(tt.summary(xname=animal_names.tolist()))

最后打印的结果是

                             Test for Constraints                             
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
cat 1.0980 0.280 3.926 0.002 0.498 1.698
dog 0.9664 0.860 1.124 0.280 -0.878 2.811
snake 1.5930 0.428 3.720 0.002 0.675 2.511

我们可以通过使用预测来验证结果,并比较给定动物类型的长度从 1 增加到 2 时预测体重的差异:

>>> [res.predict({'length': 2, 'animal':[an]}) - res.predict({'length': 1, 'animal':[an]}) for an in animal_names]
[array([ 1.09801656]), array([ 0.96641455]), array([ 1.59301594])]
>>> tt.effect
array([ 1.09801656, 0.96641455, 1.59301594])

注意:我忘记为随机数添加种子,因此这些数字无法复制。

关于python - 评估 statsmodels ols 拟合的特定类别的斜率和误差,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30948997/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com