- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想求解具有以下目标函数的混合整数线性规划:
J = 最大化 (f1(x) + f2(x))受约束:成本(x)<=阈值
其中 x 是选定变量的集合,f1 和 f2 是两个评分函数,cost 是成本函数。
f2 是基于所选变量之间相似性的函数。我不知道如何在 PuLP 中制定这个功能。
这是我的最小工作示例,其中函数 f2 是两种成分之间的相似度,我想将 similarity[i][j]
添加到目标函数 if j
已经在选定的变量中,但不知道该怎么做。
import numpy as np
import pulp
threshold = 200
model = pulp.LpProblem('selection', pulp.LpMaximize)
similarity = np.array([[1., 0.08333333, 0.1, 0., 0., 0.0625],
[0.08333333, 1., 0.33333333,
0., 0.11111111, 0.07692308],
[0.1, 0.33333333, 1., 0.2, 0., 0.09090909],
[0., 0., 0.2, 1., 0., 0.],
[0., 0.11111111, 0., 0., 1., 0.27272727],
[0.0625, 0.07692308, 0.09090909, 0., 0.27272727, 1.]])
ingredients = ['var_%d' % i for i in range(6)]
scores = np.random.randint(1, 3, size=len(ingredients))
costs = np.random.randint(20, 60, len(ingredients))
scores = dict(zip(ingredients, scores))
costs = dict(zip(ingredients, costs))
x = pulp.LpVariable.dict(
'x_%s', ingredients, lowBound=0, upBound=1, cat=pulp.LpInteger)
model += sum([scores[i] * x[i] for i in ingredients])
model += sum([costs[i] * x[i] for i in ingredients]) <= threshold
solver = pulp.solvers.PULP_CBC_CMD()
model.solve(solver)
这段代码基本上只考虑静态成本(编码在成本变量中)。如何动态添加作为 similarity
变量的相似度成本?
最佳答案
我相信你想要做的是添加一个交互项,它本质上是说当两种成分 i
时和j
i
都被选择,则存在与两者的存在相关的额外成本和j
,这在similarity
中进行了描述。矩阵。我假设(正如你的情况)similarity
是一个对称矩阵,因为 i
的排序和j
没关系(只有两者都选择或不选择才重要)。
一个简单的表述是添加术语 selected[i, j] * x[i] * x[j]
达到目标。这将使问题变得非线性,尽管其结构并不是非常困难,但有一个常见的建模技巧可以保持模型的线性。在这里。
我们定义了一组新变量y_{ij}
等于 1
仅当两者 i
和j
参与解决方案。请注意,我们可以定义它们,以便 i>j
或j<i
因为我们并不真正关心顺序。我们施加限制:
y_{ij} <= x_i
y_{ij} <= x_j
y_{ij} >= x_i + x_j - 1
这组限制保证 y_{ij}
等于 1
仅当两者 x_i
时和x_j
等于 1
,这就是我们想要的。
代码的实现:
import numpy as np
import pulp
from itertools import product
threshold = 200
model = pulp.LpProblem('selection', pulp.LpMaximize)
similarity = np.array([[1., 0.08333333, 0.1, 0., 0., 0.0625],
[0.08333333, 1., 0.33333333,
0., 0.11111111, 0.07692308],
[0.1, 0.33333333, 1., 0.2, 0., 0.09090909],
[0., 0., 0.2, 1., 0., 0.],
[0., 0.11111111, 0., 0., 1., 0.27272727],
[0.0625, 0.07692308, 0.09090909, 0., 0.27272727, 1.]])
ingredients = ['var_%d' % i for i in range(6)]
ingredient_pairs = ['var_{}_{}'.format(
ingredients.index(var[0]), ingredients.index(var[1]))
for var in product(ingredients, ingredients)
if ingredients.index(var[0]) > ingredients.index(var[1])]
# Flatten the similarity array
indices = np.triu_indices_from(similarity)
similarity = similarity[indices]
scores = np.random.randint(1, 3, size=len(ingredients))
costs = np.random.randint(20, 60, len(ingredients))
scores = dict(zip(ingredients, scores))
costs = dict(zip(ingredients, costs))
similarity = dict(zip(ingredient_pairs, similarity))
x = pulp.LpVariable.dict(
'x_%s', ingredients, lowBound=0, upBound=1, cat=pulp.LpInteger)
y = pulp.LpVariable.dict(
'y_%s', ingredient_pairs, lowBound=0, upBound=1, cat=pulp.LpInteger)
model += sum([scores[i] * x[i] for i in ingredients]) + sum([
similarity[i] * y[i] for i in ingredient_pairs])
model += sum([costs[i] * x[i] for i in ingredients]) <= threshold
for pair in ingredient_pairs:
indexes = pair.split('_')[1:]
for index in indexes:
# y_{ij} <= x_i and y_{ij} <= x_j Q
model += y[pair] <= x['var_{}'.format(index)]
# y_{ij} >= x_i + x_j - 1
model += y[pair] >= sum(x['var_{}'.format(i)] for i in indexes) - 1
solver = pulp.solvers.PULP_CBC_CMD()
model.solve(solver)
model.writeLP('similarity.lp')
print 'Objective: {}'.format(pulp.value(model.objective))
for v in model.variables():
if v.varValue > 10e-4:
print v.name, v.varValue
我希望这会有所帮助。
<小时/>关于具有动态约束的 Python Pulp 整数线性规划,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31173983/
这是代码片段。 请说出这种用小内存存储大数据的算法是什么。 public static void main(String[] args) { long longValue = 21474836
所以我使用 imap 从 gmail 和 outlook 接收电子邮件。 Gmail 像这样编码 =?UTF-8?B?UmU6IM69zq3OvyDOtc68zrHOuc67IG5ldyBlbWFpb
很久以前就学会了 C 代码;想用 Scheme 尝试一些新的和不同的东西。我正在尝试制作一个接受两个参数并返回两者中较大者的过程,例如 (define (larger x y) (if (> x
Azure 恢复服务保管库有两个备份配置选项 - LRS 与 GRS 这是一个有关 Azure 恢复服务保管库的问题。 当其驻留区域发生故障时,如何处理启用异地冗余的恢复服务保管库?如果未为恢复服务启
说,我有以下实体: @Entity public class A { @Id @GeneratedValue private Long id; @Embedded private
我有下一个问题。 我有下一个标准: criteria.add(Restrictions.in("entity.otherEntity", getOtherEntitiesList())); 如果我的
如果这是任何类型的重复,我会提前申请,但我找不到任何可以解决我的具体问题的内容。 这是我的程序: import java.util.Random; public class CarnivalGame{
我目前正在使用golang创建一个聚合管道,在其中使用“$ or”运算符查询文档。 结果是一堆需要分组的未分组文档,这样我就可以进入下一阶段,找到两个数据集之间的交集。 然后将其用于在单独的集合中进行
是否可以在正则表达式中创建 OR 条件。 我正在尝试查找包含此类模式的文件名列表的匹配项 第一个案例 xxxxx-hello.file 或者案例二 xxxx-hello-unasigned.file
该程序只是在用户输入行数时创建菱形的形状,因此它有 6 个 for 循环; 3 个循环创建第一个三角形,3 个循环创建另一个三角形,通过这 2 个三角形和 6 个循环,我们得到了一个菱形,这是整个程序
我有一个像这样的查询字符串 www.google.com?Department=Education & Finance&Department=Health 我有这些 li 标签,它们的查询字符串是这样
我有一个带有静态构造函数的类,我用它来读取 app.config 值。如何使用不同的配置值对类进行单元测试。我正在考虑在不同的应用程序域中运行每个测试,这样我就可以为每个测试执行静态构造函数 - 但我
我正在寻找一个可以容纳多个键的容器,如果我为其中一个键值输入保留值(例如 0),它会被视为“或”搜索。 map, int > myContainer; myContainer.insert(make_
我正在为 Web 应用程序创建数据库,并正在寻找一些建议来对可能具有多种类型的单个实体进行建模,每种类型具有不同的属性。 作为示例,假设我想为“数据源”对象创建一个关系模型。所有数据源都会有一些共享属
(1) =>CREATE TABLE T1(id BIGSERIAL PRIMARY KEY, name TEXT); CREATE TABLE (2) =>INSERT INTO T1 (name)
我不确定在使用别名时如何解决不明确的列引用。 假设有两个表,a 和 b,它们都有一个 name 列。如果我加入这两个表并为结果添加别名,我不知道如何为这两个表引用 name 列。我已经尝试了一些变体,
我的查询是: select * from table where id IN (1,5,4,3,2) 我想要的与这个顺序完全相同,不是从1...5,而是从1,5,4,3,2。我怎样才能做到这一点? 最
我正在使用 C# 代码执行动态生成的 MySQL 查询。抛出异常: CREATE TABLE dump ("@employee_OID" VARCHAR(50)); "{"You have an er
我有日期 2016-03-30T23:59:59.000000+0000。我可以知道它的格式是什么吗?因为如果我使用 yyyy-MM-dd'T'HH:mm:ss.SSS,它会抛出异常 最佳答案 Sim
我有一个示例模式,它的 SQL Fiddle 如下: http://sqlfiddle.com/#!2/6816b/2 这个 fiddle 只是根据 where 子句中的条件查询示例数据库,如下所示:
我是一名优秀的程序员,十分优秀!