gpt4 book ai didi

python - 使用 Pandas 中的函数分割文本——不使用 apply 的原因

转载 作者:行者123 更新时间:2023-12-01 03:58:42 24 4
gpt4 key购买 nike

可以将其重写为函数吗?

df2['AB18t'] = df2['AB18'].apply(lambda x: x.split(":")[0])
df2['AB18n'] = df2['AB18'].apply(lambda x: x.split(":")[1]).astype(int)
df2['AB18n'] = np.where(df2['AB18t'] == "Ab", df2['AB18n'] ,-df2['AB18n'])
df2['AB18t'] = np.where(df2['AB18t'] == "Ab", 1 ,0)

已尝试

def getTextNum(x):
df2['AB18t'] = df2['AB18'].apply(lambda x: x.split(":")[0])
df2['AB18n'] = df2['AB18'].apply(lambda x: x.split(":")[1]).astype(int)
df2['AB18n'] = np.where(df2['AB18t'] == "Ab", df2['AB18n'] ,-df2['AB18n'])
df2['AB18t'] = np.where(df2['AB18t'] == "Ab", 1 ,0)


df2['AB18'].apply(getTextNum)

编辑...表格1

0     Blw:001
1 Ab:008
2 Ab:007
3 Ab:006
4 Ab:005
5 Ab:004
6 Ab:003
7 Ab:002
8 Ab:001
9 Blw:001
10 Ab:001
11 Blw:002
12 Blw:001
13 Ab:001
14 Blw:002
Name: AB18, dtype: object

表格2:::

0     B:Ab:048
1 B:Ab:047
2 B:Ab:046
3 B:Ab:045
4 B:Ab:044
5 B:Ab:043
6 B:Ab:042
7 B:Ab:041
8 B:Ab:040
9 B:Ab:039
10 B:Ab:038
11 B:Ab:037
12 B:Ab:036
13 B:Ab:035
14 B:Ab:034
Name: SLT, dtype: object

最佳答案

对我来说有效str.splitindexing with str :

print df2
AB18 b c d
0 Ab:1 1.0 7 M024
1 Ab:0 2.0 9 M024
2 125:1 5.0 0 M024
3 127:0 7.0 4 M025
4 129:1 NaN 2 M024

def getTextNum(df2):
ser = df2['AB18'].str.split(":")
df2['AB18t'] = ser.str[0]
df2['AB18n'] = ser.str[1].astype(int)
df2['AB18n'] = np.where(df2['AB18t'] == "Ab", df2['AB18n'] ,-df2['AB18n'])
df2['AB18t'] = np.where(df2['AB18t'] == "Ab", 1 ,0)
return df2

print getTextNum(df2)

AB18 b c d AB18t AB18n
0 Ab:1 1.0 7 M024 1 1
1 Ab:0 2.0 9 M024 1 0
2 125:1 5.0 0 M024 0 -1
3 127:0 7.0 4 M025 0 0
4 129:1 NaN 2 M024 0 -1

Vectorized methods .

编辑:您可以将函数getTextNum与输入列(Serie)(例如df2['AB18'])一起使用并返回新的数据帧:

def getTextNum(col):
ser = col.str.split(":")
text = np.where(ser.str[0] == "Ab", 1 ,0)
num = np.where(ser.str[0] == "Ab", ser.str[1].astype(int) ,-ser.str[1].astype(int))
return pd.DataFrame({'Text':text,'Num':num}, columns= ['Text','Num'])

print getTextNum(df2['AB18'])
AB18n AB18t
0 1 1
1 0 1
2 -1 0
3 0 0
4 -1 0

df2[['AB18t', 'AB18n']] = getTextNum(df2['AB18'])

编辑1:

更通用的解决方案 - 我从后面开始计算列表 - 最后一列按 [-1] 索引,最后一列是 [-2]:

print df2
AB18 SLT
0 Blw:001 B:Ab:048
1 Ab:008 B:Ab:047
2 Ab:007 B:Ab:046
3 Ab:006 B:Ab:045
4 Ab:005 B:Ab:044
5 Ab:004 B:Ab:043
6 Ab:003 B:Ab:042
7 Ab:002 B:Ab:041
8 Ab:001 B:Ab:040
9 Blw:001 B:Ab:039
10 Ab:001 B:Ab:038
11 Blw:002 B:Ab:037
12 Blw:001 B:Ab:036
13 Ab:001 B:Ab:035
14 Blw:002 B:Ab:034

def getTextNum(df, col):
ser = df[col].str.split(":")
text = np.where(ser.str[-2] == "Ab", 1, 0)
num = np.where(ser.str[-2] == "Ab", ser.str[-1].astype(int),-ser.str[-1].astype(int))
df[df[col].name + 't'] = text
df[df[col].name + 'n'] = num
return df
#parameters - name of DataFrame, name of column in DataFrame
getTextNum(df2, 'SLT')
print df2
AB18 SLT SLTt SLTn
0 Blw:001 B:Ab:048 1 48
1 Ab:008 B:Ab:047 1 47
2 Ab:007 B:Ab:046 1 46
3 Ab:006 B:Ab:045 1 45
4 Ab:005 B:Ab:044 1 44
5 Ab:004 B:Ab:043 1 43
6 Ab:003 B:Ab:042 1 42
7 Ab:002 B:Ab:041 1 41
8 Ab:001 B:Ab:040 1 40
9 Blw:001 B:Ab:039 1 39
10 Ab:001 B:Ab:038 1 38
11 Blw:002 B:Ab:037 1 37
12 Blw:001 B:Ab:036 1 36
13 Ab:001 B:Ab:035 1 35
14 Blw:002 B:Ab:034 1 34
getTextNum(df2, 'AB18')
print df2
AB18 SLT AB18t AB18n
0 Blw:001 B:Ab:048 0 -1
1 Ab:008 B:Ab:047 1 8
2 Ab:007 B:Ab:046 1 7
3 Ab:006 B:Ab:045 1 6
4 Ab:005 B:Ab:044 1 5
5 Ab:004 B:Ab:043 1 4
6 Ab:003 B:Ab:042 1 3
7 Ab:002 B:Ab:041 1 2
8 Ab:001 B:Ab:040 1 1
9 Blw:001 B:Ab:039 0 -1
10 Ab:001 B:Ab:038 1 1
11 Blw:002 B:Ab:037 0 -2
12 Blw:001 B:Ab:036 0 -1
13 Ab:001 B:Ab:035 1 1
14 Blw:002 B:Ab:034 0 -2

关于python - 使用 Pandas 中的函数分割文本——不使用 apply 的原因,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36986071/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com