- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我从时间戳为月底的每月系列开始。我想通过填充远期值将它们升级为业务(周一至周五)每日频率。我希望满足两个条件:
虽然不优雅,但我得出的结论是,最安全的方法是:
daily_series = monthly_series.resample(rule='D').ffill().resample(rule='B',how='first')
现在,意外的情况:
dates = ['1953-02-28', '1953-03-31', '1953-04-30', '1953-05-31']
# '1953-02-28' was a Saturday
values = [1,2,3,4]
monthly_ts = pd.Series(values, index = dates)
monthly_ts
Out[74]:
1953-02-28 1
1953-03-31 2
1953-04-30 3
1953-05-31 4
dtype: int64
daily_ts = monthly_ts.resample(rule='D').ffill().resample(rule='B',how='first')
Out[77]:
1953-02-27 1 # Why do I have this observation?
1953-03-02 1
1953-03-03 1
1953-03-04 1
周六的观察结果被用于周五的重采样。这发生在 .resample(rule = 'B') 之后
您能向我解释一下为什么会发生这种情况以及如何防止这种情况发生吗?
最佳答案
这种行为方式是由于设置下采样周期而发生的。间隔中工作日的数量小于日历天数。这就是为什么星期五和星期一与星期六和星期日相连并表示为一个单元。周六和周日的值用于使用“how”和“close”参数进行下采样。</p>
dates = ['1953-02-28', '1953-03-31', '1953-04-30', '1953-05-31']
values = [1,2,3,4]
monthly_ts = pd.Series(values, index = pd.to_datetime(dates))
第一次上采样到日历天
calendar_daily_ts = monthly_ts.resample(rule='D').ffill()
让我们看看最后三条记录
In[8]: calendar_daily_ts[-3:]
Out[8]:
1953-05-29 3
1953-05-30 3
1953-05-31 4
Freq: D, dtype: int64
如果我们使用平均值和 close='left' 将采样缩减到工作日,则最后一个值将为 3.33333
In [15]: calendar_daily_ts.resample(rule='B', closed='left').mean()[-2:]
Out[15]:
1953-05-28 3.000000
1953-05-29 3.333333
Freq: B, dtype: float64
周五 (1953-05-29) 的值计算为周五、周六和周日的值的平均值 (3 + 3 + 4)/3
如果我们将平均值降采样到营业日且结束='right',则最后一个值将为 3.5
In [16]: calendar_daily_ts.resample(rule='B', closed='right').mean()[-2:]
Out[16]:
1953-05-28 3.0
1953-05-29 3.5
Freq: B, dtype: float64
周五 (1953-05-29) 的值计算为周六、周日和下周一的值的平均值 (3 + 4 + 0)/2
这不包括星期五的值。
因此出现您问题中的观察结果是因为对于 1953-02-28(星期六),下采样期间包括 1953-02-27、1953-02-28、1953-03-01 和 1953-03-02。默认情况下,间隔向左关闭 - (1953-02-27、1953-02-28、1953-03-01)。您获得了第一个 - 这是 1953-02-27
还有一个有趣的例子
In [45]: calendar_daily_ts[:4]
Out[45]:
1953-02-27 1
1953-02-28 2
1953-03-01 3
1953-03-02 4
dtype: int64
In [47]: calendar_daily_ts.resample(rule='B', closed='left').first()[:4]
Out[47]:
1953-02-27 1
1953-03-02 4
1953-03-03 1
1953-03-04 1
Freq: B, dtype: int64
In [48]: calendar_daily_ts.resample(rule='B', closed='right').first()[:4]
Out[48]:
1953-02-26 1
1953-02-27 2
1953-03-02 1
1953-03-03 1
Freq: B, dtype: int64
看看区别! (1953-02-26 值为 1)
关于python - Pandas ,.resample ('B' 的意外行为),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37342089/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!