gpt4 book ai didi

apache-spark - 在本地主机上运行的 Spark BlockManager

转载 作者:行者123 更新时间:2023-12-01 03:43:10 24 4
gpt4 key购买 nike

我有一个简单的脚本文件,我试图在模仿教程的 spark-shell 中执行 here

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

sc.stop();

val conf = new SparkConf().setAppName("MyApp").setMaster("mesos://zk://172.24.51.171:2181/mesos").set("spark.executor.uri", "hdfs://172.24.51.171:8020/spark-1.3.0-bin-hadoop2.4.tgz").set("spark.driver.host", "172.24.51.142")

val sc2 = new SparkContext(conf)

val file = sc2.textFile("hdfs://172.24.51.171:8020/input/pg4300.txt")

val errors = file.filter(line => line.contains("ERROR"))

errors.count()

我的namenode和mesos master在172.24.51.171,我的ip地址是172.24.51.142。我将这些行保存到一个文件中,然后我使用以下命令启动:
/opt/spark-1.3.0-bin-hadoop2.4/bin/spark-shell -i WordCount.scala

我的远程执行程序都因类似于以下的错误而死:
15/04/08 14:30:39 ERROR RetryingBlockFetcher: Exception while beginning fetch of 1 outstanding blocks 
java.io.IOException: Failed to connect to localhost/127.0.0.1:48554
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:191)
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:156)
at org.apache.spark.network.netty.NettyBlockTransferService$$anon$1.createAndStart(NettyBlockTransferService.scala:78)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:140)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.start(RetryingBlockFetcher.java:120)
at org.apache.spark.network.netty.NettyBlockTransferService.fetchBlocks(NettyBlockTransferService.scala:87)
at org.apache.spark.network.BlockTransferService.fetchBlockSync(BlockTransferService.scala:89)
at org.apache.spark.storage.BlockManager$$anonfun$doGetRemote$2.apply(BlockManager.scala:594)
at org.apache.spark.storage.BlockManager$$anonfun$doGetRemote$2.apply(BlockManager.scala:592)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.storage.BlockManager.doGetRemote(BlockManager.scala:592)
at org.apache.spark.storage.BlockManager.getRemoteBytes(BlockManager.scala:586)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.org$apache$spark$broadcast$TorrentBroadcast$$anonfun$$getRemote$1(TorrentBroadcast.scala:126)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$1.apply(TorrentBroadcast.scala:136)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$1.apply(TorrentBroadcast.scala:136)
at scala.Option.orElse(Option.scala:257)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply$mcVI$sp(TorrentBroadcast.scala:136)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:119)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:119)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.broadcast.TorrentBroadcast.org$apache$spark$broadcast$TorrentBroadcast$$readBlocks(TorrentBroadcast.scala:119)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1.apply(TorrentBroadcast.scala:174)
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1152)
at org.apache.spark.broadcast.TorrentBroadcast.readBroadcastBlock(TorrentBroadcast.scala:164)
at org.apache.spark.broadcast.TorrentBroadcast._value$lzycompute(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast._value(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast.getValue(TorrentBroadcast.scala:87)
at org.apache.spark.broadcast.Broadcast.value(Broadcast.scala:70)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:58)
at org.apache.spark.scheduler.Task.run(Task.scala:64)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.net.ConnectException: Connection refused: localhost/127.0.0.1:48554
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:739)
at io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:208)
at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:287)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:528)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:116)
... 1 more

在我运行 errors.count() 命令后会发生此故障。在我的 shell 中,在创建新的 SparkContext 之后,我看到了以下几行:
15/04/08 14:31:18 INFO NettyBlockTransferService: Server created on 48554
15/04/08 14:31:18 INFO BlockManagerMaster: Trying to register BlockManager
15/04/08 14:31:18 INFO BlockManagerMasterActor: Registering block manager localhost:48554 with 265.4 MB RAM, BlockManagerId(<driver>, localhost, 48554)
15/04/08 14:31:18 INFO BlockManagerMaster: Registered BlockManager

我想发生的事情是 Spark 将 BlockManager 的地址记录为 localhost:48554,然后将其发送给所有尝试与其 localhosts:48554 通信的执行程序,而不是端口 48554 上的驱动程序 IP 地址。 为什么 spark 使用 localhost 作为 BlockManager 的地址而不是 spark.driver.host?

附加信息
  • Spark Config有 spark.blockManager.port 但没有 spark.blockManager.host?只有一个 spark.driver.host,你可以看到我在我的 SparkConf 中设置的。
  • 可能与此有关 JIRA Ticket虽然这似乎是一个网络问题。我的网络配置了 DNS 就好了。
  • 最佳答案

    您可以尝试在调用 spark-shell 时使用 --master 参数提供 Spark Master 地址(或在 spark-defaults.conf 中添加)。我有一个类似的问题(请参阅我的帖子 Spark Shell Listens on localhost instead of configured IP address ),当在 shell 中动态创建上下文时,BlockManager 似乎在 localhost 上监听。

    日志:

  • 使用原始上下文时(监听主机名)
    BlockManagerInfo:在 ubuntu64server2 的内存中添加了 broadcast_1_piece0:33301
  • 创建新上下文时(在本地主机上监听)
    BlockManagerInfo:在 localhost:40235
  • 的内存中添加了 broadcast_1_piece0

    我必须连接到 Cassandra 集群,并且能够通过在 spark-defaults.conf 中提供 spark.cassandra.connection.host 并在 spark shell 中导入包 com.datastax.spark.connector._ 来查询它。

    关于apache-spark - 在本地主机上运行的 Spark BlockManager,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29523154/

    24 4 0
    文章推荐: avfoundation - 如何将 AudioBufferList 转换为 CMSampleBuffer?
    文章推荐: javascript - 如何将查询字符串数据或任何值从 url 传递到 AngularJS 中的 Controller 函数?
    文章推荐: jquery - 使用 jQuery 选择
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com