- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个简单的脚本文件,我试图在模仿教程的 spark-shell 中执行 here
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
sc.stop();
val conf = new SparkConf().setAppName("MyApp").setMaster("mesos://zk://172.24.51.171:2181/mesos").set("spark.executor.uri", "hdfs://172.24.51.171:8020/spark-1.3.0-bin-hadoop2.4.tgz").set("spark.driver.host", "172.24.51.142")
val sc2 = new SparkContext(conf)
val file = sc2.textFile("hdfs://172.24.51.171:8020/input/pg4300.txt")
val errors = file.filter(line => line.contains("ERROR"))
errors.count()
/opt/spark-1.3.0-bin-hadoop2.4/bin/spark-shell -i WordCount.scala
15/04/08 14:30:39 ERROR RetryingBlockFetcher: Exception while beginning fetch of 1 outstanding blocks
java.io.IOException: Failed to connect to localhost/127.0.0.1:48554
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:191)
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:156)
at org.apache.spark.network.netty.NettyBlockTransferService$$anon$1.createAndStart(NettyBlockTransferService.scala:78)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:140)
at org.apache.spark.network.shuffle.RetryingBlockFetcher.start(RetryingBlockFetcher.java:120)
at org.apache.spark.network.netty.NettyBlockTransferService.fetchBlocks(NettyBlockTransferService.scala:87)
at org.apache.spark.network.BlockTransferService.fetchBlockSync(BlockTransferService.scala:89)
at org.apache.spark.storage.BlockManager$$anonfun$doGetRemote$2.apply(BlockManager.scala:594)
at org.apache.spark.storage.BlockManager$$anonfun$doGetRemote$2.apply(BlockManager.scala:592)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.storage.BlockManager.doGetRemote(BlockManager.scala:592)
at org.apache.spark.storage.BlockManager.getRemoteBytes(BlockManager.scala:586)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.org$apache$spark$broadcast$TorrentBroadcast$$anonfun$$getRemote$1(TorrentBroadcast.scala:126)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$1.apply(TorrentBroadcast.scala:136)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$1.apply(TorrentBroadcast.scala:136)
at scala.Option.orElse(Option.scala:257)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply$mcVI$sp(TorrentBroadcast.scala:136)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:119)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:119)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.broadcast.TorrentBroadcast.org$apache$spark$broadcast$TorrentBroadcast$$readBlocks(TorrentBroadcast.scala:119)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1.apply(TorrentBroadcast.scala:174)
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1152)
at org.apache.spark.broadcast.TorrentBroadcast.readBroadcastBlock(TorrentBroadcast.scala:164)
at org.apache.spark.broadcast.TorrentBroadcast._value$lzycompute(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast._value(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast.getValue(TorrentBroadcast.scala:87)
at org.apache.spark.broadcast.Broadcast.value(Broadcast.scala:70)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:58)
at org.apache.spark.scheduler.Task.run(Task.scala:64)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.net.ConnectException: Connection refused: localhost/127.0.0.1:48554
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:739)
at io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:208)
at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:287)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:528)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:116)
... 1 more
15/04/08 14:31:18 INFO NettyBlockTransferService: Server created on 48554
15/04/08 14:31:18 INFO BlockManagerMaster: Trying to register BlockManager
15/04/08 14:31:18 INFO BlockManagerMasterActor: Registering block manager localhost:48554 with 265.4 MB RAM, BlockManagerId(<driver>, localhost, 48554)
15/04/08 14:31:18 INFO BlockManagerMaster: Registered BlockManager
最佳答案
您可以尝试在调用 spark-shell 时使用 --master 参数提供 Spark Master 地址(或在 spark-defaults.conf 中添加)。我有一个类似的问题(请参阅我的帖子 Spark Shell Listens on localhost instead of configured IP address ),当在 shell 中动态创建上下文时,BlockManager 似乎在 localhost 上监听。
日志:
关于apache-spark - 在本地主机上运行的 Spark BlockManager,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29523154/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!