- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
tensorflow、python 和 numpy 新手(我想这就是本示例中的所有内容)
在下面的代码中,我(几乎)明白循环中的 update_weights.run() 调用正在计算损失并开发新的权重。我没有看到这实际上如何导致权重发生变化。
我所坚持的观点被评论为#这就是我不明白的
update_weights.run() 和权重中的新值之间有什么关系? - 也许;为什么在循环后调用weights.eval 时值发生了变化?
感谢您的帮助
#@test {"output": "ignore"}
# Import tf
import tensorflow as tf
# Numpy is Num-Pie n dimensional arrays
# https://en.wikipedia.org/wiki/NumPy
import numpy as np
# Plotting library
# http://matplotlib.org/users/pyplot_tutorial.html
import matplotlib.pyplot as plt
# %matplotlib magic
# http://ipython.readthedocs.io/en/stable/interactive/tutorial.html#magics-explained
%matplotlib inline
# Set up the data with a noisy linear relationship between X and Y.
# Variable?
num_examples = 5
noise_factor = 1.5
line_x_range = (-10,10)
#Just variables in Python
# np.linspace - Return evenly spaced numbers over a specified interval.
X = np.array([
np.linspace(line_x_range[0], line_x_range[1], num_examples),
np.linspace(line_x_range[0], line_x_range[1], num_examples)
])
# Plot out the starting data
# plt.figure(figsize=(4,4))
# plt.scatter(X[0], X[1])
# plt.show()
# npm.random.randn - Return a sample (or samples) from the “standard normal” distribution.
# Generate noise for x and y (2)
noise = np.random.randn(2, num_examples) * noise_factor
# plt.figure(figsize=(4,4))
# plt.scatter(noise[0],noise[1])
# plt.show()
# += on an np.array
X += noise
# The 'Answer' polyfit to the noisy data
answer_m, answer_b = np.polyfit(X[0], X[1], 1)
# Destructuring Assignment - http://codeschool.org/python-additional-miscellany/
x, y = X
# plt.figure(figsize=(4,4))
# plt.scatter(x, y)
# plt.show()
# np.array
# for a in x
# [(1., a) for a in [1,2,3]] => [(1.0, 1), (1.0, 2), (1.0, 3)]
# numpy.ndarray.astype - http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html
# Copy of the array, cast to a specified type.
x_with_bias = np.array([(1., a) for a in x]).astype(np.float32)
#Just variables in Python
# The difference between our current outputs and the training outputs over time
# Starts high and decreases
losses = []
history = []
training_steps = 50
learning_rate = 0.002
# Start the session and give it a variable name sess
with tf.Session() as sess:
# Set up all the tensors, variables, and operations.
# Creates a constant tensor
input = tf.constant(x_with_bias)
# Transpose the ndarray y of random float numbers
target = tf.constant(np.transpose([y]).astype(np.float32))
# Start with random weights
weights = tf.Variable(tf.random_normal([2, 1], 0, 0.1))
# Initialize variables ...?obscure?
tf.initialize_all_variables().run()
print('Initialization complete')
# tf.matmul - Matrix Multiplication
# What are yhat? Why this name?
yhat = tf.matmul(input, weights)
# tf.sub - Matrix Subtraction
yerror = tf.sub(yhat, target)
# tf.nn.l2_loss - Computes half the L2 norm of a tensor without the sqrt
# loss function?
loss = tf.nn.l2_loss(yerror)
# tf.train.GradientDescentOptimizer - Not sure how this is updating the weights tensor?
# What is it operating on?
update_weights = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
# _ in Python is conventionally used for a throwaway variable
for step in range(training_steps):
# Repeatedly run the operations, updating the TensorFlow variable.
# THIS IS WHAT I DONT UNDERSTAND
update_weights.run()
losses.append(loss.eval())
b, m = weights.eval()
history.append((b,m,step))
# Training is done, get the final values for the graphs
betas = weights.eval()
yhat = yhat.eval()
# Show the fit and the loss over time.
# destructuring assignment
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
# Adjust whitespace between plots
plt.subplots_adjust(wspace=.2)
# Output size of the figure
fig.set_size_inches(12, 4)
ax1.set_title("Final Data Fit")
ax1.axis('equal')
ax1.axis([-15, 15, -15, 15])
# Scatter plot data x and y (pairs?) set with 60% opacity
ax1.scatter(x, y, alpha=.6)
# Scatter plot x and np.transpose(yhat)[0] (must be same length), in red, 50% transparency
# these appear to be the x values mapped onto the
ax1.scatter(x, np.transpose(yhat)[0], c="r", alpha=.5)
# Add the line along the slope defined by betas (whatever that is)
ax1.plot(line_x_range, [betas[0] + a * betas[1] for a in line_x_range], "g", alpha=0.6)
# This polyfit coefficients are reversed in order vs the betas
ax1.plot(line_x_range, [answer_m * a + answer_b for a in line_x_range], "r", alpha=0.3)
ax2.set_title("Loss over Time")
# Create a range of intefers from 0 to training_steps and plot the losses as a curve
ax2.plot(range(0, training_steps), losses)
ax2.set_ylabel("Loss")
ax2.set_xlabel("Training steps")
ax3.set_title("Slope over Time")
ax3.axis('equal')
ax3.axis([-15, 15, -15, 15])
for b, m, step in history:
ax3.plot(line_x_range, [b + a * m for a in line_x_range], "g", alpha=0.2)
# This line seems to be superfluous removing it doesn't change the behaviour
plt.show()
最佳答案
好的,update_weights() 正在对您定义为预测与目标之间的误差的损失调用最小化器。
它的作用是在权重中添加一些小量(多小由learning_rate参数控制),以使你的损失减少,从而使你的预测“更真实”。
这就是您调用 update_weights() 时发生的情况,因此在调用后您的权重已从一个小值发生变化,如果一切按照计划进行,您的损失值就会减少。
您想要的是跟踪损失和权重的演变,例如查看损失是否确实在减少(并且您的算法有效),或者权重是否变化很大,或者可能将它们可视化。
通过可视化损失的变化方式,您可以获得很多见解。这就是为什么你必须查看参数和损失演变的完整历史;这就是为什么你在每一步都要评估它们。
当您在最小化器上执行此操作时,eval 或运行操作与在参数上执行此操作不同。当您在最小化器上执行此操作时,它会将最小化器应用于权重。它只是评估它们。我强烈建议您阅读this website作者比我更好地解释了正在发生的事情并且更详细。
关于python - 这个 TensorFlow 示例实际上是如何更新权重来找到解决方案的,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39588008/
我有几个系统,其中包含用户表以及某种形式的业力/权重/声誉。有时是用户发布的帖子数量,有时是用户在网站上的所有事件中收到的赞成/反对票数。 USER { id int name str
我需要能够使用填充的相对大小 - 根据设备的分辨率和 dpi 变大或变小。 例如,如果我的 View 宽度为 100 像素,我希望左侧填充 10 像素,右侧填充 10 像素。但是,如果它在更高密度的屏
我目前正在使用由大约 10 个字段组成的 Solr 索引数据。当我执行搜索时,我希望某些字段的权重更高。谁能帮我指出正确的方向? 例如,在所有字段中搜索“超人”等术语时,应在“Description”
我正在使用 igraph 模拟网络随时间的变化在 r并且我正在寻找一种有效且可扩展的方式来对此进行编码以用于业务。 网络变化的主要驱动因素是: 新增节点 新领带 新节点权重 在第一阶段,在 100 个
我一直在寻找一种使用OpenVINO框架上的C++ API获取网络每一层权重/参数和偏差张量的方法。我在文档中找不到任何内容,在示例中也找不到任何示例。我如何提取这些张量? 谢谢, 塞萨尔 编辑: 分
我的问题与 PHP Memcache 扩展的 addServer 函数中的“weight”参数有关。 在过去的几个月里,我一直在为所有服务器使用“weight = 1”。我现在正在尝试应用以下配置以最
我应该使用哪种数据结构来保持元素按给定权重排序?我需要在集合中添加元素,其中每个元素都会生成特定的权重,但该权重不包含(也不计算)在元素本身内部;它是由元素之外的其他人计算的。而且,权重不需要存储(但
我正在尝试在 keras/tensorflow 中使用具有多个类的焦点损失,这导致使用我猜的分类焦点损失。我找到了一些实现here和 there或there 。 据我了解,焦点损失中的参数a主要用于二
我有一个像这样的 Pandas 数据框: df = pd.DataFrame({'id': [121, 34324, 111, 12, 45, 232], 'weight'
我有一个带有输出神经元的神经网络,我想在软最大化之前使用经过训练的权重进行线性缩放。 我有 10 个输出,我想要 10 个权重,在输出被软最大化之前乘以每个输出。因此每个输出的权重为 1。 但我不断收
我有这样的布局: 我希望它看起来像: TextView - 宽度的 40%,带 ImageView 的布局
这让我彻底疯了。我想在 android 中使用有点复杂的布局。我正在尝试使用权重而不是固定事物的大小。也许我应该放弃…… 这是我想做的: 我想要 3 个 ScrollView (里面有 TextVie
我正在尝试开发类似于网格但使用 LinearLayout。我想在单行中有 3 张图像和图像后的确切底部文本。 我尝试过的: LinearLayout layout = new LinearLayout
我想在同一行添加一个 EditText 和一个 Button,我想将 80% 的行给 editText,20% 给 Button。 这是我的代码:
我有一个 mysql 表,其中存储一列(称为 tickets),并且 tickets 值可以是任意数字。 我想要做的是有一个mysql查询,从列中选择所有行,按降序对它们进行排序,然后使用PHP对查询
我搜索了一段时间,但结果让我很困惑,因为我对 MySQL 还很陌生。 我有一个包含这 4 列的表:AUTO_INCREMENT ID、NAME、TYPE、CHANCE 所以行看起来像这样: 1, NO
我不完全是 JS 专业人士,虽然不漂亮或高效,但这是有效的。 实际上,我在表单中有重复的字段组,并允许用户根据需要将数据从第一个字段复制到所有 5 个字段。 如何使这段代码更高效? function
我正在使用xgboost库来训练二元分类器。我想通过向权重添加噪声(例如集合中树的叶节点的值)来防止训练算法的数据泄漏。为此,我需要检索每棵树的权重并修改它们。 我可以通过在 Booster 对象上使
我正在尝试让 LinearLayout 中的 View 填充宽度。我尝试使用 LayoutParams 设置它,但它给了我一个错误: 我的代码: EditText et = new EditText(
我想改变 ScrollView 的权重,但找不到实现它的方法。 这是我的 XML: **other layout.. 从代码中只能设置scrollView的高度或者宽度,weigh
我是一名优秀的程序员,十分优秀!