gpt4 book ai didi

python - 用 Pandas 替换数据框中不同列的值

转载 作者:行者123 更新时间:2023-12-01 03:30:38 24 4
gpt4 key购买 nike

我有一个数据帧df_in定义为:

import pandas as pd

dic_in = {'A': ['ff','rr' ,'nn' ,'qq','tt' ,'pp','uu'],
'B1': ['33',r'\N','39' ,'22',r'\N','56','90'],
'C1': ['44',r'\N','74' ,'34',r'\N','89','99'],
'B2': ['33','63' ,r'\N','22','71' ,'56','90'],
'C2': ['44','85' ,r'\N','34','52' ,'89','99']}
df_in = pd.DataFrame(dic_in,columns=['A','B1','C1','B2','C2'])

如果我在控制台上打印它,它看起来像这样:

In [28]:df_in
Out[28]:
A B1 C1 B2 C2
0 ff 33 44 33 44
1 rr \N \N 63 85
2 nn 39 74 \N \N
3 qq 22 34 22 34
4 tt \N \N 71 52
5 pp 56 89 56 89
6 uu 90 99 90 99

我想做的是调查列 B1C1 的每一行:如果通用行包含 \N在两列中,它需要分别用 B2C2 的内容替换其值。这样,输出 (df_out) 应如下所示:

In [28]:df_in                In[30]:df_out
Out[28]: Out[30]:
A B1 C1 B2 C2 A B C
0 ff 33 44 33 44 0 ff 33 44
1 rr \N \N 63 85 -----> 1 rr 63 85
2 nn 39 74 \N \N -----> 2 nn 39 74
3 qq 22 34 22 34 3 qq 22 34
4 tt \N \N 71 52 -----> 4 tt 71 52
5 pp 56 89 56 89 5 pp 56 89
6 uu 90 99 90 99 6 uu 90 99

我能够使用这些代码行实现我的目标:

df_out = pd.DataFrame()
for index, row in df_in.iterrows():
if row['B1']!=r'\N' and row['C1']!=r'\N':
dic = {'A': [row['A']], 'B': [row['B1']], 'C': [row['C1']]}
df_out = pd.concat([df_out,pd.DataFrame(dic)], ignore_index=True)
else:
dic = {'A': [row['A']], 'B': [row['B2']], 'C': [row['C2']]}
df_out = pd.concat([df_out,pd.DataFrame(dic)], ignore_index=True)

你能建议我一个聪明的方法来实现这样的结果吗?

最佳答案

你可以先replace \NNaN 然后 combine_firstfillna :

df_out = df_in.replace({'\\N': np.nan})
df_out['B']= df_out.B1.combine_first(df_out.B2)
df_out['C'] = df_out.C1.combine_first(df_out.C2)
df_out = df_out[['A','B','C']]
print (df_out)
A B C
0 ff 33 44
1 rr 63 85
2 nn 39 74
3 qq 22 34
4 tt 71 52
5 pp 56 89
6 uu 90 99

如果需要按子集 B1C1 将值添加到 B2C2:

df_out = df_in.replace({'\\N': np.nan})
df_out[['B', 'C']] = df_out[['B1', 'C1']].fillna(df_out[['B2', 'C2']]
.rename(columns={'B2':'B1','C2':'C1'}))
df_out = df_out[['A','B','C']]
print (df_out)
A B C
0 ff 33 44
1 rr 63 85
2 nn 39 74
3 qq 22 34
4 tt 71 52
5 pp 56 89
6 uu 90 99

关于python - 用 Pandas 替换数据框中不同列的值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40971602/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com