gpt4 book ai didi

simd - AVX 版本没有预期的那么快

转载 作者:行者123 更新时间:2023-12-01 03:24:47 26 4
gpt4 key购买 nike

我正在尝试将函数转换为 AVX 版本。函数本身基本上只是比较浮点数并返回真/假取决于计算。

这是原始函数:

bool testSingle(float* thisFloat, float* otherFloat)
{
for (unsigned int k = 0; k < COL_COUNT / 2; k++)
{

if (thisFloat[k] < -otherFloat[COL_COUNT / 2 + k] || -thisFloat[COL_COUNT / 2 + k] > otherFloat[k])
{
return true;
}
}

return false;
}

而且,这是AVX版本
__m256 testAVX(float* thisFloat, __m256* otherFloatInAVX)
{
__m256 vTemp1;
__m256 vTemp2;
__m256 vTempResult;
__m256 vEndResult = _mm256_set1_ps(0.0f);

for (unsigned int k = 0; k < COL_COUNT / 2; k++)
{

vTemp1 = _mm256_cmp_ps(_mm256_set1_ps(thisFloat[k]), otherFloatInAVX[COL_COUNT / 2 + k], _CMP_LT_OQ);

vTemp2 = _mm256_cmp_ps(_mm256_set1_ps(-thisFloat[COL_COUNT / 2 + k]), otherFloatInAVX[k], _CMP_GT_OQ);

vTempResult = _mm256_or_ps(vTemp1, vTemp2);
vEndResult = _mm256_or_ps(vTempResult, vEndResult);
if (_mm256_movemask_ps(vEndResult) == 255)
{
break;
}

}

return vEndResult;

}

这是完整的代码。我在开始时生成了一些随机浮点数并将其保存到 AVX 以便在 AVX 版本中进行计算。变量 thisFloat 中的值将与 otherFloat1, otherFloat2,...,otherFloat8 进行比较。
#define ROW_COUNT 1000000
#define COL_COUNT 46

float randomNumberFloat(float Min, float Max)
{
return ((float(rand()) / float(RAND_MAX)) * (Max - Min)) + Min;
}

int main(int argc, char** argv)
{

float** thisFloat = new float*[ROW_COUNT];
for (int i = 0; i < ROW_COUNT; ++i)
thisFloat[i] = new float[COL_COUNT];

float** otherFloat1 = new float*[ROW_COUNT];
for (int i = 0; i < ROW_COUNT; ++i)
otherFloat1[i] = new float[COL_COUNT];

float** otherFloat2 = new float*[ROW_COUNT];
for (int i = 0; i < ROW_COUNT; ++i)
otherFloat2[i] = new float[COL_COUNT];

float** otherFloat3 = new float*[ROW_COUNT];
for (int i = 0; i < ROW_COUNT; ++i)
otherFloat3[i] = new float[COL_COUNT];

float** otherFloat4 = new float*[ROW_COUNT];
for (int i = 0; i < ROW_COUNT; ++i)
otherFloat4[i] = new float[COL_COUNT];

float** otherFloat5 = new float*[ROW_COUNT];
for (int i = 0; i < ROW_COUNT; ++i)
otherFloat5[i] = new float[COL_COUNT];

float** otherFloat6 = new float*[ROW_COUNT];
for (int i = 0; i < ROW_COUNT; ++i)
otherFloat6[i] = new float[COL_COUNT];

float** otherFloat7 = new float*[ROW_COUNT];
for (int i = 0; i < ROW_COUNT; ++i)
otherFloat7[i] = new float[COL_COUNT];

float** otherFloat8 = new float*[ROW_COUNT];
for (int i = 0; i < ROW_COUNT; ++i)
otherFloat8[i] = new float[COL_COUNT];

// save to AVX
__m256** otherFloatInAVX = new __m256*[ROW_COUNT];
for (int i = 0; i < ROW_COUNT; ++i)
otherFloatInAVX[i] = new __m256[COL_COUNT];

// variable for results
unsigned int* resultsSingle = new unsigned int[ROW_COUNT];
__m256* resultsAVX = new __m256[ROW_COUNT];


// Generate Random Values
for (unsigned int i = 0; i < ROW_COUNT; i++)
{
for (unsigned int j = 0; j < COL_COUNT; j++)
{
thisFloat[i][j] = randomNumberFloat(-1000.0f, 1000.0f);
otherFloat1[i][j] = randomNumberFloat(-1000.0f, 1000.0f);
otherFloat2[i][j] = randomNumberFloat(-1000.0f, 1000.0f);
otherFloat3[i][j] = randomNumberFloat(-1000.0f, 1000.0f);
otherFloat4[i][j] = randomNumberFloat(-1000.0f, 1000.0f);
otherFloat5[i][j] = randomNumberFloat(-1000.0f, 1000.0f);
otherFloat6[i][j] = randomNumberFloat(-1000.0f, 1000.0f);
otherFloat7[i][j] = randomNumberFloat(-1000.0f, 1000.0f);
otherFloat8[i][j] = randomNumberFloat(-1000.0f, 1000.0f);

}

for (unsigned int j = 0; j < COL_COUNT / 2; j++)
{
otherFloatInAVX[i][j] = _mm256_setr_ps(otherFloat1[i][j], otherFloat2[i][j], otherFloat3[i][j], otherFloat4[i][j], otherFloat5[i][j], otherFloat6[i][j], otherFloat7[i][j], otherFloat8[i][j]);
otherFloatInAVX[i][COL_COUNT / 2 + j] = _mm256_setr_ps(-otherFloat1[i][j], -otherFloat2[i][j], -otherFloat3[i][j], -otherFloat4[i][j], -otherFloat5[i][j], -otherFloat6[i][j], -otherFloat7[i][j], -otherFloat8[i][j]);
}
}

// do normal test
auto start_normal = std::chrono::high_resolution_clock::now();
for (unsigned int i = 0; i < ROW_COUNT; i++)
{
resultsSingle[i] = testSingle(thisFloat[i], otherFloat1[i]);
resultsSingle[i] = testSingle(thisFloat[i], otherFloat2[i]);
resultsSingle[i] = testSingle(thisFloat[i], otherFloat3[i]);
resultsSingle[i] = testSingle(thisFloat[i], otherFloat4[i]);
resultsSingle[i] = testSingle(thisFloat[i], otherFloat5[i]);
resultsSingle[i] = testSingle(thisFloat[i], otherFloat6[i]);
resultsSingle[i] = testSingle(thisFloat[i], otherFloat7[i]);
resultsSingle[i] = testSingle(thisFloat[i], otherFloat8[i]);
}
auto end_normal = std::chrono::high_resolution_clock::now();

auto duration_normal = std::chrono::duration_cast<std::chrono::milliseconds>(end_normal - start_normal);
std::cout << "Duration of normal test: " << duration_normal.count() << " ms \n";

// do AVX test

auto start_avx = std::chrono::high_resolution_clock::now();
for (unsigned int i = 0; i < ROW_COUNT; i++)
{
resultsAVX[i] = testAVX(thisFloat[i], otherFloatInAVX[i]);
}
auto end_avx = std::chrono::high_resolution_clock::now();


auto duration_avx = std::chrono::duration_cast<std::chrono::milliseconds>(end_avx - start_avx);
std::cout << "Duration of AVX test: " << duration_avx.count() << " ms";
return 0;
}

然后,我测量了两者的运行时间并得到
Duration of normal test: 290 ms
Duration of AVX test: 159 ms

AVX 版本比原始版本快 1.82 倍。

是否还有可能改进 AVX 版本?还是我以错误的方式做 AVX?我预计它可能会快 5-6 倍,因为我同时进行八次计算。

最佳答案

我认为 AVX 版本必须具有与标量相同的 API(所以我几乎没有改变它):

bool testAVX(float * thisFloat, float * otherFloat)
{
size_t k = 0, size = COL_COUNT / 2, sizeAligned = size / 8 * 8;

__m256 zero = _mm256_set1_ps(0);
for (; k < sizeAligned; k += 8)
{
__m256 _thisFloat1 = _mm256_loadu_ps(thisFloat + k);
__m256 _thisFloat2 = _mm256_loadu_ps(thisFloat + k + size);
__m256 _otherFloat1 = _mm256_loadu_ps(otherFloat + k);
__m256 _otherFloat2 = _mm256_loadu_ps(otherFloat + k + size);

__m256 compareMask1 = _mm256_cmp_ps(_thisFloat1, _mm256_sub_ps(zero, _otherFloat2), _CMP_LT_OQ);
__m256 compareMask2 = _mm256_cmp_ps(_mm256_sub_ps(zero, _thisFloat2), _otherFloat1, _CMP_GT_OQ);

__m256 compareMask = _mm256_or_ps(compareMask1, compareMask2);

if (!_mm256_testz_ps(compareMask, compareMask))
return true;
}

for (; k < size; k++)
{
if (thisFloat[k] < -otherFloat[size + k] || -thisFloat[size + k] > otherFloat[k])
return true;
}
return false;
}

因此,在它们之间比较这些版本会更容易。

关于simd - AVX 版本没有预期的那么快,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42238240/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com