gpt4 book ai didi

python - 资源耗尽错误:OOM when allocating tensor with shape []

转载 作者:行者123 更新时间:2023-12-01 03:15:16 24 4
gpt4 key购买 nike

def RNN(X, weights, biases):
X = tf.reshape(X, [-1, n_inputs])
X_in = tf.matmul(X, weights['in']) + biases['in']
X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units, forget_bias=0.0, state_is_tuple=True)
init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=init_state, time_major=False)

outputs = tf.unpack(tf.transpose(outputs, [1, 0, 2])) # states is the last outputs
results = tf.matmul(outputs[-1], weights['out']) + biases['out']
del outputs,final_state,lstm_cell,init_state,X,X_in
return results

def while_loop(s,e,step):
while s+batch_size<ran:
batch_id=file_id[s:e]
batch_col=label_matrix[s:e]

batch_label = csc_matrix((data, (batch_row, batch_col)), shape=(batch_size, n_classes))
batch_label = batch_label.toarray()
batch_xs1=tf.nn.embedding_lookup(embedding_matrix,batch_id)
batch_xs=sess.run(batch_xs1)
del batch_xs1
sess.run([train_op], feed_dict={x: batch_xs,
y: batch_label})

print(step,':',sess.run(accuracy, feed_dict={x: batch_xs,y: batch_label}),sess.run(cost,feed_dict={x: batch_xs,y: batch_label}))
if step!=0 and step % 20 == 0:
save_path = saver.save(sess, './model/lstm_classification.ckpt',write_meta_graph=False)
print('Save to path', save_path)

step += 1
s+=batch_size
e+=batch_size
del batch_label,batch_xs,batch_id,batch_col
print(hp.heap())
print(hp.heap().more)

这是我的代码。它不断出现这个错误“ResourceExhaustedError:分配具有形状的张量时出现OOM”我用了孔雀鱼。然后得到了这个。 result of guppy

为什么tensorflow的变量占用这么大的空间。

最佳答案

问题是由训练循环中的这一行引起的:

while s + batch_size < ran:
# ...
batch_xs1 = tf.nn.embedding_lookup(embedding_matrix, batch_id)

调用tf.nn.embedding_lookup()函数将节点添加到 TensorFlow 图中,并且——因为这些节点永远不会被垃圾回收——在循环中这样做会导致内存泄漏。

内存泄漏的实际原因可能是 tf.nn.embedding_lookup() 参数中的 embedding_matrix NumPy 数组。 TensorFlow 尝试提供帮助,将函数参数中的所有 NumPy 数组转换为 tf.constant() TensorFlow 图中的节点。然而,在一个循环中,这最终会导致 embedding_matrix 的多个单独副本复制到 TensorFlow 中,然后复制到稀缺的 GPU 内存中。

最简单的解决方案是将 tf.nn.embedding_lookup() 调用移到训练循环之外。例如:

def while_loop(s,e,step):
batch_id_placeholder = tf.placeholder(tf.int32)
batch_xs1 = tf.nn.embedding_lookup(embedding_matrix, batch_id_placeholder)

while s+batch_size<ran:
batch_id=file_id[s:e]
batch_col=label_matrix[s:e]

batch_label = csc_matrix((data, (batch_row, batch_col)), shape=(batch_size, n_classes))
batch_label = batch_label.toarray()

batch_xs=sess.run(batch_xs1, feed_dict={batch_id_placeholder: batch_id})

关于python - 资源耗尽错误:OOM when allocating tensor with shape [],我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42499592/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com