- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
100行和列),我想提取“几乎相同”的列,即具有> 2个共同值(在同一索引处),并且在其他索引处-6ren">
我不是在寻找合并/连接列或用其他值替换某些值(尽管......也许是?)。但是我有一个很大的数据框(> 100行和列),我想提取“几乎相同”的列,即具有> 2个共同值(在同一索引处),并且在其他索引处没有不同的值(如果一列中有一个值,则另一列中必须有相同的值或 NaN)。这是此类数据框的示例:
a = np.random.randint(1,10,10)
b = np.array([np.nan,2,np.nan,3,np.nan,6,8,1,2,np.nan])
c = np.random.randint(1,10,10)
d = np.array([7,2,np.nan,np.nan,np.nan,6,8,np.nan,2,2])
e = np.array([np.nan,2,np.nan,np.nan,np.nan,6,8,np.nan,np.nan,2])
f = np.array([np.nan,2,np.nan,3.0,7,np.nan,8,np.nan,np.nan,2])
df = pd.DataFrame({'A':a,'B':b,'C':c,'D':d,'E':e, 'F':f})
df.ix[3:6,'A']=np.nan
df.ix[4:8,'C']=np.nan
编辑
keys=['S01_o4584','S02_o2531','S03_o7812','S03_o1122','S04_o5210','S04_o3212','S05_o4665','S06_o7425','S07_o3689','S08_o2371']
df['index']=keys
df = df.set_index('index')
A B C D E F
index
S01_o4584 8.0 NaN 9.0 7.0 NaN NaN
S02_o2531 8.0 2.0 5.0 2.0 2.0 2.0
S03_o7812 1.0 NaN 5.0 NaN NaN NaN
S03_o1122 NaN 3.0 6.0 NaN NaN 3.0
S04_o5210 NaN NaN NaN NaN NaN 7.0
S04_o3212 NaN 6.0 NaN 6.0 6.0 NaN
S05_o4665 NaN 8.0 NaN 8.0 8.0 8.0
S06_o7425 1.0 1.0 NaN NaN NaN NaN
S07_o3689 8.0 2.0 NaN 2.0 NaN NaN
S08_o2371 3.0 NaN 9.0 2.0 2.0 2.0
如您所见,B 列、D 列(以及新的 E 列)在位置(索引)S02_o2531、S04_o3212、S05_o4665 和 S08_o2371 具有相同的值,而在其他位置,其中一个具有值,而其他有 s NaN。
我想要的输出是:
index BD*E*
S01_o4584 7
S02_o2531 2
S03_o7812 NaN
S03_o1122 3
S04_o5210 NaN
S04_o3212 6
S05_o4665 8
S06_o7425 1
S07_o3689 2
S08_o2371 2
但是,我无法合并在索引的同一开头具有两个不同值的列:如您所见,列 F 也共享一些索引,但新索引位于 S04_o5210,但之前的组合列已在“S04_”处有一个值(索引 S04_o3212)。
有没有一种相当Pythonic的方法来做到这一点? IE。 1)根据其中的值必须相同或np.nan而不是不同的条件查找列。 2)设置一个条件,如果列与先前包含的值的索引具有相同的开头,则不能合并(我可能需要将字符串拆分为两列并执行多重索引???) 3)将它们合并到新的列中系列/数据框。
最佳答案
def almost(df):
i, j = np.triu_indices(len(df.columns), 1)
v = df.values
d = v[:, i] - v[:, j]
m = (np.where(np.isnan(d), 0, d) == 0).all(0)
return pd.concat(
[
df.iloc[:, i_].combine_first(
df.iloc[:, j_]
).rename(
tuple(df.columns[[i_, j_]])
) for i_, j_ in zip(i[m], j[m])],
axis=1
)
almost(df)
B
D
0 7.0
1 2.0
2 NaN
3 3.0
4 NaN
5 6.0
6 8.0
7 1.0
8 2.0
9 2.0
它是如何工作的
i
和 j
表示使用 numpy
获取上三角形索引的每个列组合。i
和 j
对底层 numpy
数组 df.values
进行切片,然后将它们相减。如果差异为 nan
,则表示其中一个为 nan
。否则,如果各个元素相同,则差异应为零。nan
,因此使用 np.where
将它们填充为零。(x == 0).all(0)
查找所有行均为零的位置。i
和 j
进行切片并识别匹配的列。pd.MultiIndex
为显示匹配项的列构建所有匹配项的数据框。更酷的示例
np.random.seed([3,1415])
m, n = 20, 26
df = pd.DataFrame(
np.random.randint(10, size=(m, n)),
columns=list('ABCDEFGHIJKLMNOPQRSTUVWXYZ')
).mask(np.random.choice([True, False], (m, n), p=(.6, .4)))
df
almost(df)
A D G H I J K
J X K M N J K V S X
0 6.0 7.0 3.0 NaN 4.0 6.0 NaN 6.0 NaN 7.0
1 3.0 3.0 2.0 6.0 4.0 NaN 2.0 6.0 2.0 2.0
2 3.0 0.0 NaN 2.0 4.0 3.0 NaN 3.0 4.0 0.0
3 4.0 4.0 3.0 5.0 5.0 4.0 3.0 4.0 3.0 3.0
4 7.0 NaN NaN 7.0 3.0 7.0 NaN 7.0 NaN NaN
5 NaN NaN 2.0 0.0 5.0 NaN 2.0 2.0 2.0 2.0
6 NaN 8.0 NaN NaN 9.0 2.0 2.0 1.0 NaN 8.0
7 NaN 7.0 NaN 9.0 9.0 6.0 6.0 NaN NaN 7.0
8 NaN NaN 8.0 3.0 1.0 NaN NaN NaN 4.0 NaN
9 0.0 0.0 8.0 2.0 NaN 3.0 3.0 NaN NaN NaN
10 0.0 0.0 NaN 6.0 1.0 NaN NaN 8.0 NaN NaN
11 NaN NaN 3.0 NaN 9.0 3.0 3.0 NaN 3.0 3.0
12 5.0 NaN NaN NaN 6.0 5.0 NaN 5.0 8.0 NaN
13 NaN NaN NaN NaN 7.0 5.0 5.0 NaN NaN NaN
14 NaN NaN 6.0 4.0 8.0 8.0 8.0 NaN 0.0 NaN
15 8.0 8.0 7.0 NaN NaN NaN NaN NaN 2.0 NaN
16 4.0 4.0 4.0 4.0 9.0 9.0 9.0 6.0 4.0 NaN
17 NaN 4.0 NaN 4.0 2.0 8.0 8.0 4.0 NaN 4.0
18 NaN NaN 2.0 7.0 NaN NaN NaN NaN NaN NaN
19 NaN 7.0 6.0 3.0 5.0 NaN NaN 7.0 NaN 7.0
关于python - 有没有办法获得 pandas DataFrame 的几列的 "union"?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43195757/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!