gpt4 book ai didi

python - 计算 numpy histogram2d 数据的中值

转载 作者:行者123 更新时间:2023-12-01 02:59:03 24 4
gpt4 key购买 nike

我有一些数据存放在 x 和 y 中。然后,我对 x bin 中的数据进行归一化,使 x bin 中的所有数据总和为 1...因此我对每个 x 处的每个 y 值都有一个归一化概率。

    nA, binsx, binsy = np.histogram2d(dataA,dataB,
bins=[binsA,binsB],normed=False)

H = np.ma.masked_where(nA==0.0, nA)
for i in range(len(H[0,:])): # Column index i, over len of row 0
colTot = np.sum(H[:,i])
for j in range(len(H[:,0])): # Row index j, over len of column 0
H[j,i] = H[j,i]/colTot

此时 H 已沿列标准化...每个总和为 1。

我的问题是,如何有效地生成每列的中值?我相信我需要为每一列(或 xbin 中的一组值)生成一个新数组,其中 y 值的数量等于该 ybin 的原始 (nA) 计数。看起来很复杂...有更简单的方法吗?

这是我现在正在尝试的:

nA, binsx, binsy = np.histogram2d(dataA,dataB,
bins=[binsA,binsB],normed=False)
for j in range(nA[0,:].size): # Loop over number of columns
oneMass = np.array([])
for i in range(nA[:,0].size): # loop over rows in y...
tmp = np.repeat(binsA[i],np.int32(nA[i,j]))
if tmp.size > 0:
oneMass = np.concatenate((oneMass,tmp) )

print('Median',np.median(oneMass))

最佳答案

如果您已经对列进行归一化,您可以对累积概率函数进行线性插值至 0.5:

cumCols = np.cumsum(H, axis = 1)
medians = np.array([np.interp(.5, binsA, cumCols[:,i]) for i in range(len(binsA))])

关于python - 计算 numpy histogram2d 数据的中值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43992223/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com