- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 pyspark ML
库对数据框中的列值进行 L1
标准化。以下是我的代码。但它失败了。您能帮我找出这段代码有什么问题吗?
from pyspark.ml.feature import Normalizer
y = range(1,10)
data = spark.createDataFrame([[float(e), ] for e in y])
#data.select('_1').show()
normalizer = Normalizer(p=1.0, inputCol="_1", outputCol="features")
data2 = normalizer.transform(data)
data2.select("features").show()
以下是错误日志的一部分。
Py4JJavaError: An error occurred while calling o857.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure:
Task 0 in stage 36.0 failed 4 times, most recent failure: Lost task 0.3
in stage 36.0 (TID 67, XXXXX.serveraddress.com):
org.apache.spark.SparkException: Failed to execute user defined
function($anonfun$createTransformFunc$1: (double) => vector)
最佳答案
Normalizer
用于标准化行
上的向量
,而不是跨列的标量。
要进行 L1 缩放一个或多个标量列,您可以尝试:
data.select([
(data[c] / s).alias(c)
for c, s in zip(data.columns, data.groupBy().sum().first())
])
## +--------------------+
## | _1|
## +--------------------+
## |0.022222222222222223|
## |0.044444444444444446|
## | 0.06666666666666667|
## | 0.08888888888888889|
## | 0.1111111111111111|
## | 0.13333333333333333|
## | 0.15555555555555556|
## | 0.17777777777777778|
## | 0.2|
## +--------------------+
但要注意可能的溢出和数值精度问题。
您当然也可以使用 Pipeline
API 缩放Column
:
from pyspark.ml.feature import SQLTransformer
stf = SQLTransformer(statement="""
WITH norm AS (SELECT SUM({inputCol}) L1 FROM __THIS__)
SELECT /*+ MAPJOIN(norm) +*/
__THIS__.*, __THIS__.{inputCol} / norm.L1 {outputCol}
FROM __THIS__ CROSS JOIN norm
""".format(inputCol="_1", outputCol="_1_scaled"))
stf.transform(data)
## +---+--------------------+
## | _1| _1_scaled|
## +---+--------------------+
## |1.0|0.022222222222222223|
## |2.0|0.044444444444444446|
## |3.0| 0.06666666666666667|
## |4.0| 0.08888888888888889|
## |5.0| 0.1111111111111111|
## |6.0| 0.13333333333333333|
## |7.0| 0.15555555555555556|
## |8.0| 0.17777777777777778|
## |9.0| 0.2|
## +---+--------------------+
关于python - 标准化数据框 pyspark ML 的列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44450715/
如何将运算符传递给 ML 中的函数?例如,考虑这个伪代码: function (int a, int b, operator op) return a op b 这里,运算符可以是 op +
我尝试在 Google Cloud ML 上运行来自 github 的 word-RNN 模型。提交作业后,我在日志文件中收到错误。 这是我提交的训练内容 gcloud ml-engine jobs
在 a.ml 中定义了一个记录类型 t 并且也是透明地定义的 在 a.mli 中,即在 d 接口(interface)中,以便类型定义可用 到所有其他文件。 a.ml 还有一个函数 func,它返回一
关闭 ML.NET 模型生成器后,是否可以为创建的模型重新打开它? 我可以删除创建的模型并重新开始,但这并不理想。 最佳答案 不,不是真的。 AutoML/Model Builder 可以生成代码并将
我有一个关于训练可以预测名称是否为女性的 ML.NET 的问题。该模型可以使用这样的管道进行训练: var mlContext = new MLContext(); IDataView trainin
我在 ASP.NET Core 应用程序中使用 ML.NET,并在 Startup 中使用以下代码: var builder = services.AddPredictionEnginePool();
我使用 sklearn 创建了一个模型进行分类。当我调用函数 y_pred2 = clf.predict (features2) 时,它会返回一个包含我的预测的所有 id 的列表 y_pred2 =
我已向 cloud ml 提交了训练作业。但是,它找不到 csv 文件。它就在桶里。这是代码。 # Use scikit-learn to grid search the batch size and
我是 Azure Databricks 的新手,尽管我在 Databricks 方面有很好的经验,但仅限于 Data Engg 方面。我对 Databricks Runtime ML 和 ML Flo
为什么我尝试将经过训练的模型部署到 Google Cloud ML,却收到以下错误: Create Version failed.Model validation failed: Model meta
我是 Azure Databricks 的新手,尽管我在 Databricks 方面有很好的经验,但仅限于 Data Engg 方面。我对 Databricks Runtime ML 和 ML Flo
我是 Azure ML 新手。我有一些疑问。有人可以澄清下面列出的我的疑问吗? Azure ML 服务与 Azure ML 实验服务之间有什么区别。 Azure ML 工作台和 Azure ML St
我的 Cloud ML 训练作业已完成,输出如下: "consumedMLUnits": 43.24 我如何使用此信息来确定培训工作的成本?我无法在以下两个选项之间做出决定: 1)根据这个page ,
docs for setting up Google Cloud ML建议安装 Tensorflow 版本 r0.11。我观察到 r0.12 中新提供的 TensorFlow 函数在 Cloud ML
我正在关注一个来自 - https://spark.apache.org/docs/2.3.0/ml-classification-regression.html#multinomial-logist
我想使用 mosmlc 将我的 ML 程序编译成可执行二进制文件。但是,我找不到太多关于如何操作的信息。 我想编译的代码在这里http://people.pwf.cam.ac.uk/bt288/tic
假设我有两个 Azure ML 工作区: Workspace1 - 由一个团队(Team1)使用,该团队仅训练模型并将模型存储在 Workspace1 的模型注册表中 Workspace2 - 由另一
我尝试使用以下命令行在 Azure 上的 Linux(Ubuntu) 数据科学虚拟机上设置我的 Azure 机器学习环境: az ml 环境设置 但是,它显示错误为加载命令模块 ml 时出错。一直在谷
假设我有两个 Azure ML 工作区: Workspace1 - 由一个团队(Team1)使用,该团队仅训练模型并将模型存储在 Workspace1 的模型注册表中 Workspace2 - 由另一
我尝试使用以下命令行在 Azure 上的 Linux(Ubuntu) 数据科学虚拟机上设置我的 Azure 机器学习环境: az ml 环境设置 但是,它显示错误为加载命令模块 ml 时出错。一直在谷
我是一名优秀的程序员,十分优秀!