- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个相当大的数据集,但为了可重复性,假设我有以下多索引数据框:
arrays = [['bar', 'bar','bar', 'baz', 'baz', 'foo', 'foo', 'foo', 'qux', 'qux'],
['one', 'one','two', 'one', 'two', 'one', 'two', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
a = pd.DataFrame(np.random.random((10,)), index = index)
a[1] = pd.date_range('2017-07-02', periods=10, freq='5min')
a
Out[68]:
0 1
first second
bar one 0.705488 2017-07-02 00:00:00
one 0.715645 2017-07-02 00:05:00
two 0.194648 2017-07-02 00:10:00
baz one 0.129729 2017-07-02 00:15:00
two 0.449889 2017-07-02 00:20:00
foo one 0.031531 2017-07-02 00:25:00
two 0.320757 2017-07-02 00:30:00
two 0.876243 2017-07-02 00:35:00
qux one 0.443682 2017-07-02 00:40:00
two 0.802774 2017-07-02 00:45:00
我想将当前时间戳附加为由第一秒索引组合标识的每个组的新行。 (例如,bar-one
、bar-two
等)
我做了什么:
将时间戳附加到每个组的函数:
def myfunction(g, now):
g.loc[g.shape[0], 1] = now # current timestamp
return g
将该函数应用于 groupby 对象,
# current timestamp
now = pd.datetime.now()
a = a.reset_index().groupby(['first', 'second']).apply(lambda x: myfunction(x, now))
这将返回:
first second 0 1
first second
bar one 0 bar one 0.705488 2017-07-02 00:00:00.000
1 bar one 0.715645 2017-07-02 00:05:00.000
2 NaN NaN NaN 2017-07-02 02:05:06.442
two 2 bar two 0.194648 2017-07-02 00:10:00.000
1 NaN NaN NaN 2017-07-02 02:05:06.442
baz one 3 baz one 0.129729 2017-07-02 00:15:00.000
1 NaN NaN NaN 2017-07-02 02:05:06.442
two 4 baz two 0.449889 2017-07-02 00:20:00.000
1 NaN NaN NaN 2017-07-02 02:05:06.442
foo one 5 foo one 0.031531 2017-07-02 00:25:00.000
1 NaN NaN NaN 2017-07-02 02:05:06.442
two 6 foo two 0.320757 2017-07-02 00:30:00.000
7 foo two 0.876243 2017-07-02 00:35:00.000
2 NaN NaN NaN 2017-07-02 02:05:06.442
qux one 8 qux one 0.443682 2017-07-02 00:40:00.000
1 NaN NaN NaN 2017-07-02 02:05:06.442
two 9 qux two 0.802774 2017-07-02 00:45:00.000
1 NaN NaN NaN 2017-07-02 02:05:06.442
我不明白为什么引入了新的索引级别,但是,我可以摆脱它并最终得到我想要的:
a = a.reset_index(level = 2).drop(('level_2', 'first', 'second')).loc[:,(0,1)]
0 1
first second
bar one 0.705488 2017-07-02 00:00:00.000
one 0.715645 2017-07-02 00:05:00.000
one NaN 2017-07-02 02:05:06.442
two 0.194648 2017-07-02 00:10:00.000
two NaN 2017-07-02 02:05:06.442
baz one 0.129729 2017-07-02 00:15:00.000
one NaN 2017-07-02 02:05:06.442
two 0.449889 2017-07-02 00:20:00.000
two NaN 2017-07-02 02:05:06.442
foo one 0.031531 2017-07-02 00:25:00.000
one NaN 2017-07-02 02:05:06.442
two 0.320757 2017-07-02 00:30:00.000
two 0.876243 2017-07-02 00:35:00.000
two NaN 2017-07-02 02:05:06.442
qux one 0.443682 2017-07-02 00:40:00.000
one NaN 2017-07-02 02:05:06.442
two 0.802774 2017-07-02 00:45:00.000
two NaN 2017-07-02 02:05:06.442
问题:
我想知道是否有一种优雅的、更简单的方法来执行此操作(向每个组附加一个新行,并且 - 尽管此处未提及 - 有条件地填充该新行的其余字段(时间戳字段除外)。 )
最佳答案
您可以首先按索引进行分组,为每个组构建所需的附加行,然后将其连接回来并对 df 进行排序。
(
pd.concat([a,
a.groupby(level=[0,1]).first().apply(lambda x: [np.nan,dt.datetime.now()]
,axis=1)])
.sort_index()
)
Out[538]:
0 1
first second
bar one 0.587648 2017-07-02 00:00:00.000000
one 0.974524 2017-07-02 00:05:00.000000
one NaN 2017-07-02 15:18:57.503371
two 0.555171 2017-07-02 00:10:00.000000
two NaN 2017-07-02 15:18:57.503371
baz one 0.832874 2017-07-02 00:15:00.000000
one NaN 2017-07-02 15:18:57.503371
two 0.956891 2017-07-02 00:20:00.000000
two NaN 2017-07-02 15:18:57.503371
foo one 0.872959 2017-07-02 00:25:00.000000
one NaN 2017-07-02 15:18:57.503371
two 0.056546 2017-07-02 00:30:00.000000
two 0.359184 2017-07-02 00:35:00.000000
two NaN 2017-07-02 15:18:57.503371
qux one 0.301327 2017-07-02 00:40:00.000000
one NaN 2017-07-02 15:18:57.503371
two 0.891815 2017-07-02 00:45:00.000000
two NaN 2017-07-02 15:18:57.503371
关于python - 对 groupby 对象应用函数以将行附加到每个组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44865453/
给定输入: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 将数字按奇数或偶数分组,然后按小于或大于 5 分组。 预期输出: [[1, 3, 5], [2, 4], [6, 8, 10
编辑: @coldspeed、@wen-ben、@ALollz 指出了我在字符串 np.nan 中犯的新手错误。答案很好,所以我不删除这个问题来保留那些答案。 原文: 我读过这个问题/答案 What'
我试图概括我提出的问题 here . mlb 数据框看起来像 Player Position Salary Year 0 Mike Wit
我认为我不需要共享整个数据框,但基本上,这是有问题的代码行(当然,已经导入了 pandas) divstack = df[df['Competitor']=='Emma Slabach'].group
我面临下一个问题:我有组(按 ID),对于所有这些组,我需要应用以下代码:如果组内位置之间的距离在 3 米以内,则需要将它们添加在一起,因此将创建一个新组(代码如何创建我在下面显示的组)。现在,我想要
我有以下数据: ,dateTime,magnitude,occurrence,dateTime_s 1,2017-11-20 08:00:09.052260,12861,1,2017-11-20 08
我按感兴趣的列对 df 进行分组: grouped = df.groupby('columnA') 现在我只想保留至少有 5 名成员的组: grouped.filter(lambda x: len(x
数据是一个时间序列,许多成员 ID 与许多类别相关联: data_df = pd.DataFrame({'Date': ['2018-09-14 00:00:22',
选择 u.UM_TOKEN_NO 、u.UM_FULLNAME、u.SECTOR、u.department_name、t.TS_PROJECT_CODE、sum(t.TS_TOTAL_HRS) 来自
我有这两个表: +---------------+-------------+---------------------+----------+---------+ | items_ordered |
我正在使用 groupby 和 sum 快速汇总两个数据集 一个包含: sequence shares 1 100 2 200 3 50 1 2
这个问题在这里已经有了答案: list around groupby results in empty groups (3 个答案) itertools groupby object not out
我有一组行,我想按标识符的值进行分组 - 存在于每一行中 - 然后对将作为结果的组进行进一步的隔离处理。 我的数据框是这样的: In [50]: df Out[50]: groupkey b
假设您要在全局范围内销售产品,并且希望在某个主要城市的某个地方设立销售办事处。您的决定将完全基于销售数字。 这将是您的(简化的)销售数据: df={ 'Product':'Chair', 'Count
我有一个将数据分组两次的查询: var query = (from a in Context.SetA() from b in Context.SetB().Where(x => x.aId == a
我有一个这种格式的数据框: value identifier 2007-01-01 0.087085 55 2007-01-01 0.703249
这个问题在这里已经有了答案: python groupby behaviour? (3 个答案) 关闭 4 年前。 我有一个这样的列表 [u'201003', u'200403', u'200803
在 Python 中,我可以使用 itertools.groupby 将具有相同键的连续元素分组。 : >>> items = [(1, 2), (1, 5), (1, 3), (2, 9), (3,
无法翻译以下 GroupBy 查询并将引发错误:不支持客户端 GroupBy IEnumerable ids = new List { 1, 2, 3 }; var q = db.Comments.W
考虑一个 Spark DataFrame,其中只有很少的列。目标是对其执行 groupBy 操作,而不将其转换为 Pandas DataFrame。等效的 Pandas groupBy 代码如下所示:
我是一名优秀的程序员,十分优秀!