gpt4 book ai didi

python - 将实时数据合并到二维数组中

转载 作者:行者123 更新时间:2023-12-01 02:43:15 25 4
gpt4 key购买 nike

我正在计算两个距离,并将它们以 0.1 的间隔存储在 2D 数组中。目前我正在做这个。然而,对于大量的点来说,需要花费很多时间

import numpy as np
from scipy.spatial import distance as d
dat=np.random.rand(100,3)
dd2d=np.zeros((10,10))
while len(dat)>0:
i=len(dat)-1
while i>0:
dist0=d.euclidean(dat[0],dat[i])
dist1=d.cosine(dat[0],dat[i])
ind0=int(dist0/0.1)
ind1=int(dist1/0.1)
if ind0>9 or ind1>9:
pass
else:
dd2d[ind0,ind1]+=1
i-=1
dat=np.delete(dat,0,axis=0)
print len(dat)

最有效的方法是什么?

另外,如何将代码中的 while 循环转换为 for 循环,以便我可以添加进度条/tqdm 来跟踪运行时间。

最佳答案

如果您已经导入scipy.spatial.distance,不妨使用pdist。然后你只需制作一个二维直方图。使用np.histogram2d。

def binDists2d(dat, f1 = 'euclidean', f2 = 'cosine'):
dist0 = d.pdist(dat, f1)
dist1 = d.pdist(dat, f2)
rng = np.array([[0, 1], [0, 1]])
return np.histogram2d(dist0, dist1, bins = 10, range = rng)

pdist 仅返回上三角元素。如果您想手动执行此操作,请使用 np.triu_indices,如果 scipy 不可用,您可以使用它来生成距离。

def cosdist(u, v):
return 1 - u.dot(v) / (np.linalg.norm(u) * np.linlg.norm(v))

def binDists2d(dat, f0 = lambda u, v: np.linalg.norm(u - v), f1 = cosdist):
i, j = np.triu_indices(dat.shape[0], 1)
dist0 = f0(dat[i], dat[j])
dist1 = f1(dat[i], dat[j])
rng = np.array([[0, 1], [0, 1]])
return np.histogram2d(dist0, dist1, bins = 10, range = rng)

编辑:内存消耗较少的版本:

def binDists2d(dat, f0, f1, n = 1, bins = 10, rng = np.array([[0, 1], [0, 1]])):
i_, j_ = np.triu_indices(dat.shape[0], 1)
out = np.zeros((bins, bins))
i_, j_ = np.array_split(i_, n), np.array_split(j_, n)
for k, (i, j) in enumerate(zip(i_, j_)):
dist0 = f0(dat[i], dat[j])
dist1 = f1(dat[i], dat[j])
out += np.histogram2d(dist0, dist1, bins = bins, range = rng)
print(str(k) + " of " + str(n) + "completed")
return out

关于python - 将实时数据合并到二维数组中,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45476762/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com