- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我无法记录到使用 multprocess.Pool.apply_async 的单个文件。我正在努力适应this Logging Cookbook 中的示例,但它仅适用于 multiprocessing.Process
。将日志队列传递到 apply_async
似乎没有效果。我想使用一个池,以便我可以轻松管理并发线程的数量。
下面的 multiprocessing.Process 改编示例对我来说效果很好,只是我没有从主进程获取日志消息,并且我认为当我有 100 个大型作业时它不会很好地工作。
import logging
import logging.handlers
import numpy as np
import time
import multiprocessing
import pandas as pd
log_file = 'PATH_TO_FILE/log_file.log'
def listener_configurer():
root = logging.getLogger()
h = logging.FileHandler(log_file)
f = logging.Formatter('%(asctime)s %(processName)-10s %(name)s %(levelname)-8s %(message)s')
h.setFormatter(f)
root.addHandler(h)
# This is the listener process top-level loop: wait for logging events
# (LogRecords)on the queue and handle them, quit when you get a None for a
# LogRecord.
def listener_process(queue, configurer):
configurer()
while True:
try:
record = queue.get()
if record is None: # We send this as a sentinel to tell the listener to quit.
break
logger = logging.getLogger(record.name)
logger.handle(record) # No level or filter logic applied - just do it!
except Exception:
import sys, traceback
print('Whoops! Problem:', file=sys.stderr)
traceback.print_exc(file=sys.stderr)
def worker_configurer(queue):
h = logging.handlers.QueueHandler(queue) # Just the one handler needed
root = logging.getLogger()
root.addHandler(h)
# send all messages, for demo; no other level or filter logic applied.
root.setLevel(logging.DEBUG)
# This is the worker process top-level loop, which just logs ten events with
# random intervening delays before terminating.
# The print messages are just so you know it's doing something!
def worker_function(sleep_time, name, queue, configurer):
configurer(queue)
start_message = 'Worker {} started and will now sleep for {}s'.format(name, sleep_time)
logging.info(start_message)
time.sleep(sleep_time)
success_message = 'Worker {} has finished sleeping for {}s'.format(name, sleep_time)
logging.info(success_message)
def main_with_process():
start_time = time.time()
single_thread_time = 0.
queue = multiprocessing.Queue(-1)
listener = multiprocessing.Process(target=listener_process,
args=(queue, listener_configurer))
listener.start()
workers = []
for i in range(10):
name = str(i)
sleep_time = np.random.randint(10) / 2
single_thread_time += sleep_time
worker = multiprocessing.Process(target=worker_function,
args=(sleep_time, name, queue, worker_configurer))
workers.append(worker)
worker.start()
for w in workers:
w.join()
queue.put_nowait(None)
listener.join()
end_time = time.time()
final_message = "Script execution time was {}s, but single-thread time was {}s".format(
(end_time - start_time),
single_thread_time
)
print(final_message)
if __name__ == "__main__":
main_with_process()
但是我无法让以下适应工作:
def main_with_pool():
start_time = time.time()
queue = multiprocessing.Queue(-1)
listener = multiprocessing.Process(target=listener_process,
args=(queue, listener_configurer))
listener.start()
pool = multiprocessing.Pool(processes=3)
job_list = [np.random.randint(10) / 2 for i in range(10)]
single_thread_time = np.sum(job_list)
for i, sleep_time in enumerate(job_list):
name = str(i)
pool.apply_async(worker_function,
args=(sleep_time, name, queue, worker_configurer))
queue.put_nowait(None)
listener.join()
end_time = time.time()
print("Script execution time was {}s, but single-thread time was {}s".format(
(end_time - start_time),
single_thread_time
))
if __name__ == "__main__":
main_with_pool()
我使用 multiprocessing.Manager、multiprocessing.Queue、multiprocessing.get_logger、apply_async.get() 尝试了许多细微的变化,但没有任何效果。
我认为对此会有一个现成的解决方案。我应该尝试 celery 吗?
谢谢
最佳答案
这里实际上有两个独立的问题,它们相互交织:
multiprocessing.Queue()
对象作为参数传递给基于池的函数(您可以将其传递给直接启动的工作线程,但不能传递给任何“进一步的”,因为它是)。None
发送到监听器进程。要修复第一个,请替换:
queue = multiprocessing.Queue(-1)
与:
queue = multiprocessing.Manager().Queue(-1)
作为管理器管理的Queue()
实例可以被传递。
要解决第二个问题,可以收集每个异步调用的每个结果,或者关闭池并等待它,例如:
pool.close()
pool.join()
queue.put_nowait(None)
或更复杂的:
getters = []
for i, sleep_time in enumerate(job_list):
name = str(i)
getters.append(
pool.apply_async(worker_function,
args=(sleep_time, name, queue, worker_configurer))
)
while len(getters):
getters.pop().get()
# optionally, close and join pool here (generally a good idea anyway)
queue.put_nowait(None)
(您还应该考虑将 put_nowait
替换为 put
的等待版本,而不是使用无限长度的队列。)
关于python - 如何使用 multiprocessing.Pool.apply_async 记录到单个文件,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48045978/
我是 python 的新手,我有一个函数可以为我的数据计算特征,然后返回一个应该处理并写入文件的列表。,..我正在使用 Pool 进行计算,然后使用写入文件的回调函数,但是回调函数没有被调用,我已经在
我试图了解多进程池是如何工作的。在下面的编程中,我创建了一个包含 4 个进程的池。 我使用回调函数调用 apply_async ,该函数应该更新名为 result_list 的列表 import Qu
我希望如果我调用 apply_async在实例方法中并获得其结果,所做的任何更改都将保留为 fork 进程的一部分。但是,似乎每次对 apply_async 的新调用都会创建所述实例的新副本。 采取以
我只是在使用 Python 的多处理模块,但是以下代码正在连续运行,但没有给出任何输出。我究竟做错了什么?我也尝试过 pool.close() 和 pool.join() 但没有效果。 这是我迄今为止
我尝试通过 apply_async 将共享计数器传递给多处理中的任务,但它失败并出现以下错误“RuntimeError:同步对象只能通过继承在进程之间共享”。这是怎么回事 def processLin
我有一个带有 apply_async 的进程池,其中不同的进程需要不同的时间来提供输出。一旦一个进程完成,我就会对其输出进行一些计算。在我想启动另一个进程之后。通过这种方式,我想创建一个无限循环,它启
这是我的代码: import multiprocessing import time import os def worker(): print str(os.getpid()) + " is
使用覆盖率来查看必须测试的内容,并且覆盖率显示旁边必须要测试的内容:send_alert.apply_async() 我知道是celery任务,但是有什么办法可以测试这行代码吗? 理解测试逻辑的其余代
传递给多处理的 apply_async() 的函数内的 print() 不会打印任何内容。 我想最终使用 apply_async 来处理大块的文本文件。因此,我希望脚本在屏幕上打印出已经处理了多少行。
我正在计算大量函数(大约1000000),并且由于它非常耗时,所以我使用multiprocessing.Pool.apply_async函数。但是,当我尝试使用 AsyncResult 类的 .get
import time import multiprocessing def multi_thread(files): q = multiprocessing.Queue() for
我一直在关注文档以尝试了解多处理池。我想到了这个: import time from multiprocessing import Pool def f(a): print 'f(' + st
我在我的应用程序中使用 celery 来运行周期性任务。让我们看下面的简单示例 from myqueue import Queue @perodic_task(run_every=timedelta(
我正在尝试了解使用多处理池的 apply_sync 方法时幕后发生的事情。 谁运行回调方法?是调用apply_async的主进程吗? 假设我发送了一大堆带有回调的 apply_async 命令,然后继
我有一个脚本,其中包括从列表中打开一个文件,然后对该文件中的文本执行某些操作。我正在使用 python 多处理和 Pool 来尝试并行化此操作。脚本的抽象如下: import os from mult
如果我理解正确,apply_async 会立即返回一个 AsyncResult 对象。如果我按以下方式收集这些对象,并仅在所有工作人员完成后才使用 get(),假设值将按照调用函数的顺序是否安全? o
我正在尝试使用 multiprocessing模块,更具体地说是 Pool.apply_async()功能。 这段代码运行良好: import multiprocessing def do():
我们使用的是 django 1.10、Celery 4.1.0 我正在尝试使用 apply_async。这是任务: from celery import Celery app = Celery('my
我在 Python 3.7.3 中遇到一个问题,在处理大型计算任务时,我的多处理操作(使用队列、池和 apply_async)会死锁。 对于小型计算,这个多处理任务工作得很好。然而,当处理较大的进程时
我想调用 pool.apply_async(func) 并在结果可用时立即累积结果,而无需相互等待。 import multiprocessing import numpy as np chrName
我是一名优秀的程序员,十分优秀!