gpt4 book ai didi

python - 重新采样 pandas 数据框并应用模式

转载 作者:行者123 更新时间:2023-12-01 02:14:33 27 4
gpt4 key购买 nike

我想计算 pandas 数据框中每组重新采样的行的众数。我尝试这样:

import datetime
import pandas as pd
import numpy as np
from statistics import mode


date_times = pd.date_range(datetime.datetime(2012, 4, 5),
datetime.datetime(2013, 4, 5),
freq='D')
a = np.random.sample(date_times.size) * 10.0

frame = pd.DataFrame(data={'a': a},
index=date_times)

frame['b'] = np.random.randint(1, 3, frame.shape[0])
frame.resample("M").apply({'a':'sum', 'b':'mode'})

但是它不起作用。

我也尝试过:

frame.resample("M").apply({'a':'sum', 'b':lambda x: mode(frame['b'])})

但是我得到了错误的结果。有什么想法吗?

谢谢。

最佳答案

frame.resample("M").apply({'a':'sum', 'b':lambda x: mode(frame['b'])})每个重采样组都会调用一次 lambda 函数。 x被分配给一个系列,其值来自 b重采样组的列。

lambda x: mode(frame['b'])忽略x并简单地返回 frame['b'] 的模式——整个专栏。

相反,你会想要类似的东西

frame.resample("M").apply({'a':'sum', 'b':lambda x: mode(x)})

但是,这会导致 StatisticsError

StatisticsError: no unique mode; found 2 equally common values

因为存在一个具有多个最常见值的重采样组。

如果您使用scipy.stats.mode相反,则返回最小的最常见值:

import datetime
import pandas as pd
import numpy as np
import scipy.stats as stats

date_times = pd.date_range(datetime.datetime(2012, 4, 5),
datetime.datetime(2013, 4, 5),
freq='D')
a = np.random.sample(date_times.size) * 10.0
frame = pd.DataFrame(data={'a': a}, index=date_times)
frame['b'] = np.random.randint(1, 3, frame.shape[0])

result = frame.resample("M").apply({'a':'sum', 'b':lambda x: stats.mode(x)[0]})
print(result)

产量

            b           a
2012-04-30 2 132.708704
2012-05-31 2 149.103439
2012-06-30 2 128.492203
2012-07-31 2 142.167672
2012-08-31 2 126.516689
2012-09-30 1 133.209314
2012-10-31 2 136.684212
2012-11-30 2 165.075150
2012-12-31 2 167.064212
2013-01-31 1 150.293293
2013-02-28 1 125.533830
2013-03-31 2 174.236113
2013-04-30 2 11.254136

如果您想要最大的最常见值,那么不幸的是,我不知道有任何内置函数可以为您执行此操作。在这种情况下,您可能必须计算 value_counts表:

In [89]: counts
Out[89]:
b counts
2012-04-30 3 11
2012-04-30 2 10
2012-04-30 1 5
2012-05-31 2 14
2012-05-31 1 9
2012-05-31 3 8

然后按 counts 两者降序排序和b值,按日期分组并取每组中的第一个值:

import datetime as DT
import numpy as np
import scipy.stats as stats
import pandas as pd
np.random.seed(2018)

date_times = pd.date_range(DT.datetime(2012, 4, 5), DT.datetime(2013, 4, 5), freq='D')
N = date_times.size
a = np.random.sample(N) * 10.0
frame = pd.DataFrame(data={'a': a, 'b': np.random.randint(1, 4, N)}, index=date_times)

resampled = frame.resample("M")
sums = resampled['a'].sum()
counts = resampled['b'].value_counts()
counts.name = 'counts'
counts = counts.reset_index(level=1)
counts = counts.sort_values(by=['counts','b'],
ascending=[False,False])
result = counts.groupby(level=0).first()

产量

            b  counts
2012-04-30 3 11
2012-05-31 2 14
2012-06-30 3 12
2012-07-31 2 12
2012-08-31 2 11
2012-09-30 3 12
2012-10-31 2 13
2012-11-30 3 13
2012-12-31 2 14
2013-01-31 3 14
2013-02-28 1 10
2013-03-31 3 13
2013-04-30 3 2

关于python - 重新采样 pandas 数据框并应用模式,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48448091/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com