gpt4 book ai didi

python - Keras/Tensorflow 计算批处理的mean_iou

转载 作者:行者123 更新时间:2023-12-01 02:10:41 25 4
gpt4 key购买 nike

我正在尝试计算 mean_iou 并更新每个批处理的混淆矩阵。但 30 步后我收到一个 SIGKILL 事件。我在生成器中使用的图像的分辨率为2048x1024,因此我的batch_size是2。似乎在一步完成后我无法释放内存。我在迭代所有图像时测试了生成器,但一切正常。

我在 GTX 1080 上使用 Keras 2.1.2 和 Tensorflow 1.4.1 作为后端。如果有人提供建议,那就太好了。

def calculate_iou_tf(model, generator, steps, num_classes):
conf_m = K.tf.zeros((num_classes, num_classes), dtype=K.tf.float64)
generator.reset()
pb = Progbar(steps)
for i in range(0, steps):
x, y_true = generator.next()
y_pred = model.predict_on_batch(x)

# num_classes = K.int_shape(y_pred)[-1]
y_pred = K.flatten(K.argmax(y_pred, axis=-1))
y_true = K.reshape(y_true, (-1,))

mask = K.less_equal(y_true, num_classes - 1)
y_true = K.tf.to_int32(K.tf.boolean_mask(y_true, mask))
y_pred = K.tf.to_int32(K.tf.boolean_mask(y_pred, mask))

mIoU, up_op = K.tf.contrib.metrics.streaming_mean_iou(y_pred, y_true, num_classes, updates_collections=[conf_m])
K.get_session().run(K.tf.local_variables_initializer())
with K.tf.control_dependencies([up_op]):
score = K.eval(mIoU)
print(score)

pb.update(i + 1)

conf_m = K.eval(conf_m)
return conf_m, K.eval(mIoU)

最佳答案

问题在于使用 keras.backend 函数而不是 numpy 函数。每次调用函数时,都会创建一个新的张量。不幸的是 - 在当前的 tf 实现中 - 没有系统的张量垃圾收集 - 因此这会导致内存已满错误。切换到 numpy 解决了问题。

关于python - Keras/Tensorflow 计算批处理的mean_iou,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48720388/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com