- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 Yellowbrick 包中的 t-SNE 来可视化数据。我收到一个错误。
import pandas as pd
from yellowbrick.text import TSNEVisualizer
from sklearn.datasets import make_classification
## produce random data
X, y = make_classification(n_samples=200, n_features=100,
n_informative=20, n_redundant=10,
n_classes=3, random_state=42)
## visualize data with t-SNE
tsne = TSNEVisualizer()
tsne.fit(X, y)
tsne.poof()
错误(由 fit 方法引发):
ValueError: The truth value of an array with more than one element
is ambiguous. Use a.any() or a.all()
最佳答案
在对这些参数进行一些实验之后:
tsne.fit(X, y.tolist())
这不会引发错误,但不会产生输出。
最后,用字符串列表替换是可行的:
y_series = pd.Series(y, dtype="category")
y_series.cat.categories = ["a", "b", "c"]
y_list = y_series.values.tolist()
tsne.fit(X, y_list)
tsne.poof()
该库旨在分析文本数据集,也许这就是它不是 documented 的原因。 y 必须是字符串。此外,错误消息没有帮助。
关于python - Yellowbrick t-SNE 拟合引发 ValueError,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48950135/
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 t-SNE(t-Distributed Sto
我有大约 3000 个 100D 数据点,我使用 t-SNE 将它们投影到 2D。每个数据点属于三个类别之一。但是,当我在两台不同的计算机上运行脚本时,我不断得到不一致的结果。当我使用随机种子时,预计
我将数据分开进行训练/测试。当我使用 PCA 时,它很简单。 from sklearn.decomposition import PCA pca = PCA() X_train_pca = pca.f
我一直在探索不同的降维算法,特别是 PCA 和 T-SNE。我正在使用 MNIST 数据集的一小部分(大约 780 维)并尝试将原始数据减少到三个维度以可视化为散点图。 T-SNE 可以描述的很详细h
我有一个 Twitter 语料库,我用它来构建情绪分析应用程序。语料库有 5000 条推文,这些推文被手工标记为 - 负面、中立或正面 为了表示文本 - 我正在使用 gensim word2vec 预
是否有并行版本的 t-SNE 算法的 Python 库?或者多核/并行t-SNE算法是否存在? 我正在尝试使用 t-SNE 减少词汇表中所有 word2vec 的维度 (300d -> 2d)。 问题
我们可以记录库的训练如gensim使用 import logging logger = logging.getLogger() logger.setLevel(logging.INFO) 这在运行 T
我的 T-SNE 散点图打印得很好,但打印出的颜色全部相同并且没有图例。我在这方面遇到了很大的麻烦。对于 SeaBorn 来说,它是“hue”,对于 Matplotlib 来说,它是定义“c”。总而言
我有一个约 20k 词向量列表('tuple_vectors'),没有标签,每个都如下所示 [-2.84658718e+00 -7.74899840e-01 -2.24296474e+00 -8.69
问题是哪个应该先出现:a) 聚类还是 b) 降维算法?换句话说,我可以应用像 t-SNE 这样的伪(因为它不是真的)降维方法,然后使用聚类算法来提取聚类,还是应该在原始高维空间上执行聚类并仅用于给节点
我有两组数据训练和测试。两个数据集分别有30213条和30235条,每条66维。 我正在尝试应用 scikit learn 的 t-SNE 将维度减少到 2。由于数据集很大,如果我尝试一次性处理整个数
我正在尝试使用 Yellowbrick 包中的 t-SNE 来可视化数据。我收到一个错误。 import pandas as pd from yellowbrick.text import TSNEV
我正在尝试对平方距离矩阵运行 tsne 分析。这些是我正在使用的命令。 model = TSNE(n_components = 2,perplexity = 32, verbose = 10,n_it
是什么让 t-sne 受到监督? 维基百科对 t-sne algorithm 进行分类作为一种监督方法。我读到监督方法涉及训练,有输入和期望的结果。 我在想,t-sne 的目标是最小化 Kullbac
目标:我的目标是在 R 中使用 t-SNE(t 分布随机邻域嵌入)对我的训练数据进行降维(具有 N 个观察值和 >K 个变量,其中 K>>N),随后旨在为我的测试数据提供 t-SNE 表示。 示例:假
很简单,如果我在 Python 中对高维数据执行 t-SNE,那么我会得到反射(reflect)每个新点的 2 或 3 个坐标。但是我如何将这些映射到原始 ID? 我能想到的一种方法是,如果索引一直保
我无法在我的 Windows 机器上安装 tsne 包。我按照说明 here为 Python 安装 tsne 包。但是 pip install tsne 或 pip install git+https
我有一个很大的文件(下面是一小部分数据),如下所示,我想画一个 PCA,我可以用 PCA 函数画 PCA 但它看起来有点乱,因为我有 200 列所以我想也许 t-SNE 或 UMAP 效果更好,但我无
这是使用 IRIS 数据的 t-SNE 代码: library(Rtsne) iris_unique <- unique(iris) # Remove duplicates iris_matrix <
我尝试在R中使用T-sne。我想使用 dtw 而不是欧几里德距离。如何更改 R 中的规范? 对精选数据执行算法 library(Rtsne) tsne <- Rtsne(train[,-1], dim
我是一名优秀的程序员,十分优秀!