- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个按日期时间索引的特征数据框,其间隔是可变的,但大约在[百分之一秒,2秒]左右。一些示例输入:
2018-05-30 01:00:00.177335 0.008845 0.078787 0.075259 0.062903 0.080644 0.070641 0.123609 0.123609 0.379142 0.334873
2018-05-30 01:00:00.197618 0.008165 0.072722 0.069466 0.058061 0.084252 0.065204 0.114090 0.114090 0.349875 0.309034
2018-05-30 01:00:00.198604 0.007582 0.077386 0.084229 0.123003 0.078229 -0.028003 0.046915 0.105932 -0.038534 0.277084
2018-05-30 01:00:00.209151 0.125945 0.072224 0.088524 0.144552 0.172234 0.062866 0.103104 0.098863 0.329249 0.268425
2018-05-30 01:00:00.209000 -0.001327 0.067707 0.082986 0.135505 0.151487 0.058935 0.096654 0.092678 0.100460 0.241702
2018-05-30 01:00:00.209954 0.008740 0.063721 0.078101 0.127524 0.152567 0.055466 0.090963 0.087222 0.094545 0.227452
2018-05-30 01:00:00.211234 0.008255 0.060179 0.073759 0.120431 0.144079 0.052383 0.075903 0.082372 -0.070497 0.005282
2018-05-30 01:00:00.212916 0.078199 0.067070 0.069874 0.114085 0.136485 0.049624 0.081938 0.078034 0.093496 0.215160
2018-05-30 01:00:00.213127 0.074286 0.073802 0.076467 0.108375 0.129652 0.047142 0.057717 0.074129 -0.071906 -0.006338
2018-05-30 01:00:00.246716 0.101065 0.151183 0.143619 0.123444 0.133590 0.044896 0.054967 0.070597 -0.068484 -0.006036
2018-05-30 01:00:00.254647 0.096466 0.144302 0.137082 0.117827 0.127510 0.042855 0.052468 0.067385 -0.065373 -0.005762
我想生成一个“窗口”列表,其中每个窗口都是最后 120 秒的数据,并为不超过 10 秒的最后一个条目创建一个标签。目前,我正在这样做:
for date in df.index:
window = df.loc[(df.index <= date) & (df.index >= date-datetime.timedelta(seconds=120))]
if len(window) > 0:
range_ = df.loc[(df.index > date) & (df.index < date+datetime.timedelta(seconds=10))].values
if len(range_) > 0:
X.append(window.values)
y = range_[-1][0]
Y.append(y)
但这在 215k 行数据帧上需要近 14 分钟。我怎样才能以另一种方式最好地矢量化/加速这个计算?
最佳答案
通过您提供的小样本数据,我已经能够将行按间隔分组。在本示例中,我使用了 20 毫秒 的范围,而不是 120 秒,因此很清楚这些组是否实际出现
# Note the index is formatted to a datetime using pd.to_datetime()
# The index is also sorted using df.sort_index()
df
Out[]:
1 2 3 4 5 6 7 8 9 10
date
2018-05-30 01:00:00.177335 0.008845 0.078787 0.075259 0.062903 0.080644 0.070641 0.123609 0.123609 0.379142 0.334873
2018-05-30 01:00:00.197618 0.008165 0.072722 0.069466 0.058061 0.084252 0.065204 0.114090 0.114090 0.349875 0.309034
2018-05-30 01:00:00.198604 0.007582 0.077386 0.084229 0.123003 0.078229 -0.028003 0.046915 0.105932 -0.038534 0.277084
2018-05-30 01:00:00.209000 -0.001327 0.067707 0.082986 0.135505 0.151487 0.058935 0.096654 0.092678 0.100460 0.241702
2018-05-30 01:00:00.209151 0.125945 0.072224 0.088524 0.144552 0.172234 0.062866 0.103104 0.098863 0.329249 0.268425
2018-05-30 01:00:00.209954 0.008740 0.063721 0.078101 0.127524 0.152567 0.055466 0.090963 0.087222 0.094545 0.227452
2018-05-30 01:00:00.211234 0.008255 0.060179 0.073759 0.120431 0.144079 0.052383 0.075903 0.082372 -0.070497 0.005282
2018-05-30 01:00:00.212916 0.078199 0.067070 0.069874 0.114085 0.136485 0.049624 0.081938 0.078034 0.093496 0.215160
2018-05-30 01:00:00.213127 0.074286 0.073802 0.076467 0.108375 0.129652 0.047142 0.057717 0.074129 -0.071906 -0.006338
2018-05-30 01:00:00.246716 0.101065 0.151183 0.143619 0.123444 0.133590 0.044896 0.054967 0.070597 -0.068484 -0.006036
2018-05-30 01:00:00.254647 0.096466 0.144302 0.137082 0.117827 0.127510 0.042855 0.052468 0.067385 -0.065373 -0.005762
%%timeit
X = []
Y = []
for date in df.index:
window = df.loc[(df.index <= date) & (df.index >= date-datetime.timedelta(seconds=0.02))]
if len(window) > 0:
X.append(window.values)
4.06 ms ± 55 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
让我们检查每个间隔中的行数,以确保稍后获得相同的数字:
[len(i) for i in X]
Out[110]: [1, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2]
# It's now not necessary for the df to be sorted by datetime
intervals = np.logical_and(
np.greater_equal.outer(df.index.values, df.index.values - np.timedelta64(20, 'ms')),
np.less_equal.outer(df.index.values, df.index.values)
)
11.6 µs ± 54.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
# When you want to use these intervals:
for i in np.arange(intervals.shape[0]):
# do whatever you want to do with df.iloc[intervals[:, i]]
print(df.iloc[intervals[:, i]])
再次检查每个间隔的长度:
[len(df.iloc[intervals[:, i]]) for i in np.arange(intervals.shape[0])]
Out[]: [1, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2]
太好了,它们是一样的
我希望这是一个起点!我对 numpy 很陌生,所以这对我来说也很困难!
关于python - 进行 pandas 计算的更好方法是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50951700/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!