- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这是一个三部分的问题
1) 类(class)大小 - 我正在 5 个类(class)上训练 TF 对象检测 API,其中大小并不接近:
INFO:tensorflow:global step 264250: loss = 0.2799 (0.755 sec/step)
INFO:tensorflow:global step 264251: loss = 0.0271 (0.787 sec/step)
INFO:tensorflow:global step 264252: loss = 0.1122 (0.677 sec/step)
INFO:tensorflow:global step 264253: loss = 0.1709 (0.797 sec/step)
INFO:tensorflow:global step 264254: loss = 0.8366 (0.790 sec/step)
INFO:tensorflow:global step 264255: loss = 0.0541 (0.741 sec/step)
INFO:tensorflow:global step 264256: loss = 0.0760 (0.781 sec/step)
INFO:tensorflow:global step 264257: loss = 0.0621 (0.777 sec/step)
最佳答案
1) 是的,它会以某种方式影响结果。更准确地说,您的模型将非常擅长识别第 5 类和第 4 类,并且可能对其他类有所了解。考虑将 [4, 5] 的实例数量限制为至少与其他类处于同一数量级。这在开始时尤其有用,因此它可以平衡地表示每个类。
这里同样非常重要的是使用数据增强(见 this answer)。
3) 通常,您的模型应该需要几个时期才能很好地训练,尤其是当您进行数据增强时。
这在 SO 和存储库中的问题上随处可见:您无法知道它是否仅从损失的值中收敛! .考虑这种情况:您有 shuffle: True
对于您的输入图像,第 4 类和第 5 类中的 344,706 张图像。如果 shuffle 对它们进行排列,使这些图像排在来自类 [1,2,3] 的图像之前,那么您的模型到目前为止学习了一些很好的表示,但是当它遇到由于过度拟合,第 1 类图像会过冲。因此,您的损失将跃升至某个非常高的值。
解决办法是运行eval.py
并行,因为这让您了解模型在所有类上的表现。当您对该指标感到满意时,您可以停止。
请注意,如果它们涉及不同的主题,在 StackOverflow 上提出不同的问题是正常的,因为我们正在为您回答,也为您当前职位的所有 future 人回答。
所以我会在另一个问题中回答 2) :)
关于tensorflow - 大类不平衡的训练,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47080259/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!