作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想在下面的数据集中使用带有一点复杂函数的 applymap 方法。
value1 value2 value3 value4 value5 people
147 119 69 92 106 533.0
31 20 12 14 26 103.0
37 22 24 18 19 120.0
10 13 7 13 10 53.0
38 48 18 30 27 161.0
401 409 168 354 338 1670.0
109 92 55 82 69 407.0
5 9 7 11 9 41.0
44 36 21 48 28 177.0
59 40 19 38 27 183.0
8 9 1 7 10 35.0
人员列表示值列的总和。我想用它们的百分比替换值数字。例如:第一行 value1 是 147,第一行值的总和是 533。我想用 (147/533)*100 替换 147
我认为它看起来像这样。但我无法让它发挥作用。
df.loc[:, 'value1':'value5'] = df.loc[:, 'value1':'value5'].applymap(lambda x: (x / df['people'])*100)
最佳答案
函数applymap
用于按元素处理DataFrame
的每个值。
更好的是使用矢量化解决方案 DataFrame.div
:
df.loc[:, 'value1':'value5'] = df.loc[:, 'value1':'value5'].div(df['people'], axis=0) * 100
print (df)
value1 value2 value3 value4 value5 people
0 27.579737 22.326454 12.945591 17.260788 19.887430 533.0
1 30.097087 19.417476 11.650485 13.592233 25.242718 103.0
2 30.833333 18.333333 20.000000 15.000000 15.833333 120.0
3 18.867925 24.528302 13.207547 24.528302 18.867925 53.0
4 23.602484 29.813665 11.180124 18.633540 16.770186 161.0
5 24.011976 24.491018 10.059880 21.197605 20.239521 1670.0
6 26.781327 22.604423 13.513514 20.147420 16.953317 407.0
7 12.195122 21.951220 17.073171 26.829268 21.951220 41.0
8 24.858757 20.338983 11.864407 27.118644 15.819209 177.0
9 32.240437 21.857923 10.382514 20.765027 14.754098 183.0
10 22.857143 25.714286 2.857143 20.000000 28.571429 35.0
<小时/>
另一个带有广播的numpy
解决方案:
df.loc[:, 'value1':'value5'] = (df.loc[:, 'value1':'value5'].values /
df['people'].values[:, None] * 100)
print (df)
value1 value2 value3 value4 value5 people
0 27.579737 22.326454 12.945591 17.260788 19.887430 533.0
1 30.097087 19.417476 11.650485 13.592233 25.242718 103.0
2 30.833333 18.333333 20.000000 15.000000 15.833333 120.0
3 18.867925 24.528302 13.207547 24.528302 18.867925 53.0
4 23.602484 29.813665 11.180124 18.633540 16.770186 161.0
5 24.011976 24.491018 10.059880 21.197605 20.239521 1670.0
6 26.781327 22.604423 13.513514 20.147420 16.953317 407.0
7 12.195122 21.951220 17.073171 26.829268 21.951220 41.0
8 24.858757 20.338983 11.864407 27.118644 15.819209 177.0
9 32.240437 21.857923 10.382514 20.765027 14.754098 183.0
10 22.857143 25.714286 2.857143 20.000000 28.571429 35.0
<小时/>
如果想要类似 applymap
的东西,可以使用 apply
,但上面的解决方案更快:
df.loc[:, 'value1':'value5'] = )df.loc[:, 'value1':'value5']
.apply(lambda x: (x / df['people'])*100))
print (df)
value1 value2 value3 value4 value5 people
0 27.579737 22.326454 12.945591 17.260788 19.887430 533.0
1 30.097087 19.417476 11.650485 13.592233 25.242718 103.0
2 30.833333 18.333333 20.000000 15.000000 15.833333 120.0
3 18.867925 24.528302 13.207547 24.528302 18.867925 53.0
4 23.602484 29.813665 11.180124 18.633540 16.770186 161.0
5 24.011976 24.491018 10.059880 21.197605 20.239521 1670.0
6 26.781327 22.604423 13.513514 20.147420 16.953317 407.0
7 12.195122 21.951220 17.073171 26.829268 21.951220 41.0
8 24.858757 20.338983 11.864407 27.118644 15.819209 177.0
9 32.240437 21.857923 10.382514 20.765027 14.754098 183.0
10 22.857143 25.714286 2.857143 20.000000 28.571429 35.0
关于python - Pandas applymap 方法,传递列名作为参数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51558378/
我是一名优秀的程序员,十分优秀!