- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我从传感器获取数据并使用 h5py 将其存储在 HDF5 文件中。传感器数据作为字节对象出现,我使用 numpy 将其转换为结构化数组。然后我将结构化数组写入 HDF5 文件。这一切都按预期进行。
现在我想从 HDF5 文件读回数据,但我只对其中的某些部分感兴趣。例如,如果我只想阅读一栏。问题在于,直接将结构化 numpy 数组写入 HDF5 文件会将所有数据写入单个 block ,例如形状 (10,)。默认 block 大小设置为 (256,)。这意味着我读取了每个 block 的 256 行和所有数据列。然而,当列数增加时,这会变得非常慢。
有没有办法修改数据或更改分块参数,以便我可以读取单列数据而不是每个 block 中的整个 block ?
我正在使用的一个最小示例如下所示:
import h5py
import ctypes
import numpy as np
class SensorStruct(ctypes.Structure):
_pack_ = 4
_fields_ = [('tc_time',ctypes.c_int64),
('pc_time',ctypes.c_double),
('nSample', ctypes.c_ushort),
('fMean', ctypes.c_float),
('fLowerbound', ctypes.c_float),
('fUpperbound', ctypes.c_float)]
def CreateFile(filename):
#Create a new HDF5 file
with h5py.File(filename, 'w', libver='latest') as f:
f.swmr_mode = True
def AddDataset(filename, dsetname, struct):
#Add a dataset to an existing HDF5 file
with h5py.File(filename, 'r+', libver='latest', swmr=True) as f:
f.create_dataset(dsetname,
dtype = struct,
shape = (0,), #Shape will update each time data is added
maxshape = (60480000,),
chunks = True, #Need to modify this somehow
compression = 'gzip')
def WriteData(filename, data):
#Append an existing dataset with new data
with h5py.File(filename, 'r+', libver='latest', swmr=True) as f:
dset = f[dsetname]
length = dset.shape[0]
maxlength = dset.maxshape[0]
newlength = length + len(data)
if newlength < maxlength:
dset.resize((newlength,))
dset[length:newlength] = data
filename = 'TESTFILE.h5'
dsetname = 'Sensor1'
struct_dt = np.dtype(SensorStruct)
#Rawdata comes in from a sensor every few seconds, returns as bytes object
rawdata1 = b"\x15\xcd[\x07\x00\x00\x00\x00 x\x81BA\x02\xd7A\x00\x00\x00\x00'u\x1fA\xf4Q\x01AbY?A\x16\xcd[\x07\x00\x00\x00\x00 x\x81BA\x02\xd7A\x01\x00\x00\x00\x1c\xe4&A[\x85\x0bA\x97\x96=A\x17\xcd[\x07\x00\x00\x00\x00 x\x81BA\x02\xd7A\x02\x00\x00\x00\xf6\x8b\x02A\xe5\xd5\xd5@\xc1Y\x1bA\x18\xcd[\x07\x00\x00\x00\x00 x\x81BA\x02\xd7A\x03\x00\x00\x00 \xec9A?W\x17A\xd0vRA\x19\xcd[\x07\x00\x00\x00\x00 x\x81BA\x02\xd7A\x04\x00\x00\x00\xf2\t/A\x83U\x19A\r&[A\x1a\xcd[\x07\x00\x00\x00\x00 x\x81BA\x02\xd7A\x05\x00\x00\x00s\x8a\x18A\xb0\x19\x04A\xc6\xb51A\x1b\xcd[\x07\x00\x00\x00\x00 x\x81BA\x02\xd7A\x06\x00\x00\x00P\xb6>A6\xc5 A)erA\x1c\xcd[\x07\x00\x00\x00\x00 x\x81BA\x02\xd7A\x07\x00\x00\x00\xe5e\x11A\x17\x9c\xff@^\xbf5A\x1d\xcd[\x07\x00\x00\x00\x00 x\x81BA\x02\xd7A\x08\x00\x00\x00*\xbe\x19At\xd5\x04AN\x919A\x1e\xcd[\x07\x00\x00\x00\x00 x\x81BA\x02\xd7A\t\x00\x00\x00\xa2* A(-\x03AE\xedFA"
rawdata2 = b'\x1f\xcd[\x07\x00\x00\x00\x00 x\x01EA\x02\xd7A\n\x00\x00\x00\xb6\x89&A\xd7\x8f\x07A\xe9\x00SA \xcd[\x07\x00\x00\x00\x00 x\x01EA\x02\xd7A\x0b\x00\x00\x00\x91I\xfd@*\\\xdc@<\x17!A!\xcd[\x07\x00\x00\x00\x00 x\x01EA\x02\xd7A\x0c\x00\x00\x00,q\x12A\x81\x1f\xfa@\x81\xfe(A"\xcd[\x07\x00\x00\x00\x00 x\x01EA\x02\xd7A\r\x00\x00\x00\x04@\x1cA\x03p\x05A\x05\xb03A#\xcd[\x07\x00\x00\x00\x00 x\x01EA\x02\xd7A\x0e\x00\x00\x00\xad\x89:A8h#A\xab\x88SA$\xcd[\x07\x00\x00\x00\x00 x\x01EA\x02\xd7A\x0f\x00\x00\x00I\x0f\xf5@\x15\xaa\xca@Rk\x0cA%\xcd[\x07\x00\x00\x00\x00 x\x01EA\x02\xd7A\x10\x00\x00\x00\xab\xeb\x1dA\x86 \x05A\x1807A&\xcd[\x07\x00\x00\x00\x00 x\x01EA\x02\xd7A\x11\x00\x00\x00Q\xda3A\xdc\xa6\x1cAT)ZA\'\xcd[\x07\x00\x00\x00\x00 x\x01EA\x02\xd7A\x12\x00\x00\x00U\xb3=A\xae\xcb\x1aA\xebmQA(\xcd[\x07\x00\x00\x00\x00 x\x01EA\x02\xd7A\x13\x00\x00\x00\x8f\x82\x0cA\x11\x15\xf3@$]&A'
data1 = np.frombuffer(rawdata1, dtype=SensorStruct)
data2 = np.frombuffer(rawdata2, dtype=SensorStruct)
CreateFile(filename)
AddDataset(filename, dsetname, SensorStruct)
WriteData(filename, data1)
WriteData(filename, data2)
这里我尝试读取单列数据:
import time
t0 = time.time()
with h5py.File(filename, 'r', libver='latest', swmr=True) as f:
dset = f[dsetname]
#Optimize chunking so I can read one column
#My real dataset contains hundreds of columns and milions of rows
#So this minimal example may look slightly trivial
print('Chunksize: {}'.format(dset.chunks))
t = dset['pc_time']
print('Reading the time column took {} seconds'.format(time.time()-t0))
最佳答案
In [551]: dt = np.dtype([('a',int),('b','uint8'),('c','float32'),('d','float64')])
In [552]: x = np.ones(10, dt)
In [553]: x.dtype
Out[553]: dtype([('a', '<i8'), ('b', 'u1'), ('c', '<f4'), ('d', '<f8')])
In [554]: x.itemsize
Out[554]: 21
In [555]: x.__array_interface__
Out[555]:
{'data': (40185408, False),
'strides': None,
'descr': [('a', '<i8'), ('b', '|u1'), ('c', '<f4'), ('d', '<f8')],
'typestr': '|V21',
'shape': (10,),
'version': 3}
该数组的每条记录占用 21 个字节,“V21”。
In [557]: f = h5py.File('vtype.h5','w')
In [558]: ds = f.create_dataset('data', data=x)
In [559]: ds
Out[559]: <HDF5 dataset "data": shape (10,), type "|V21">
In [560]: ds.dtype
Out[560]: dtype([('a', '<i8'), ('b', 'u1'), ('c', '<f4'), ('d', '<f8')])
在 h5dump
中,此数据集显示为
DATATYPE H5T_COMPOUND {
H5T_STD_I64LE "a";
H5T_STD_U8LE "b";
H5T_IEEE_F32LE "c";
H5T_IEEE_F64LE "d";
}
有关分块的文档显示了一个分块元组,其元素数量与数组的形状相同。
http://docs.h5py.org/en/stable/high/dataset.html#chunked-storage
这里我创建了一个一维数组,因此分块(如果指定)仅适用于该维度,而不适用于复合数据类型。
对于 numpy 数组,访问结构化数组的单个字段相对较快,与访问二维数组的列或沿一维数组的独立字段相当。这是一个 View 。
但是从 h5
数据集加载是一个副本。通过这个小示例,加载 ds[:]
比 ds['a']
更快。并且 ds[:n]['a']
比 ds['a'][:n]
更快。
我不知道这些时间与简单二维数组的列访问相比如何。我不知道时间是否取决于数据类型的大小。
关于python - h5py 分块结构化结构化 numpy 数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53652842/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!