- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我确实是 PyTorch 的初学者。我训练了一个自动编码器网络,以便可以绘制潜在向量(编码器的结果)的分布。
这是我用于网络训练的代码。
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import save_image
from torch.utils.data import Dataset
from PIL import Image
import os
import glob
dir_img_decoded = '/media/dohyeong/HDD/mouth_autoencoder/dc_img_2'
if not os.path.exists(dir_img_decoded):
os.mkdir(dir_img_decoded)
dir_check_point = '/media/dohyeong/HDD/mouth_autoencoder/ckpt_2'
if not os.path.exists(dir_check_point):
os.mkdir(dir_check_point)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
num_epochs = 200
batch_size = 150 # up -> GPU memory increase
learning_rate = 1e-3
dir_dataset = '/media/dohyeong/HDD/mouth_autoencoder/mouth_crop/dir_normalized_mouth_cropped_images'
images = glob.glob(os.path.join(dir_dataset, '*.png'))
train_images = images[:-113]
test_images = images[-113:]
train_images.sort()
test_images.sort()
class TrumpMouthDataset(Dataset):
def __init__(self, images):
super(TrumpMouthDataset, self).__init__()
self.images = images
self.transform = transforms.Compose([
# transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
def __getitem__(self, index):
image = Image.open(self.images[index])
return self.transform(image)
def __len__(self):
return len(self.images)
train_dataset = TrumpMouthDataset(train_images)
test_dataset = TrumpMouthDataset(test_images)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(60000, 60),
nn.ReLU(True),
nn.Linear(60, 3),
nn.ReLU(True),
)
self.decoder = nn.Sequential(
nn.Linear(3, 60),
nn.ReLU(True),
nn.Linear(60, 60000),
nn.Tanh()
)
def forward(self, x):
x = x.view(x.size(0), -1)
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return encoded, decoded
model = Autoencoder().cuda()
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(),
lr=learning_rate,
weight_decay=1e-5)
for epoch in range(num_epochs):
total_loss = 0
for index, imgs in enumerate(train_dataloader):
imgs = imgs.to(device)
# ===================forward=====================
outputs = model(imgs)
imgs_flatten = imgs.view(imgs.size(0), -1)
loss = criterion(outputs, imgs_flatten)
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
print('{} Epoch, [{}/{}] batch, loss: {:.4f}'.format(epoch, index + 1, len(train_dataloader), loss.item()))
avg_loss = total_loss / len(train_dataset)
print('{} Epoch, avg_loss: {:.4f}'.format(epoch, avg_loss))
if epoch % 10 == 0:
check_point_file = os.path.join(dir_check_point, str(epoch) + ".pth")
torch.save(model.state_dict(), check_point_file)
训练后,我尝试使用此代码获取编码值。
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
check_point = '/media/dohyeong/HDD/mouth_autoencoder/290.pth'
model = torch.load(check_point)
for index, imgs in enumerate(train_dataloader):
imgs = imgs.to(device)
# ===================evaluate=====================
encoded, _ = model(imgs)
它已完成并显示此错误消息。“类型错误:‘collections.OrderedDict’对象不可调用”我可以得到一些帮助吗?
最佳答案
您好,欢迎来到 PyTorch 社区:D
更改model = torch.load(check_point)
至model.load_state_dict(torch.load(check_point))
.
唯一的问题是这行:
model = torch.load(check_point)
您保存检查点的方式是:
torch.save(model.state_dict(), check_point_file)
也就是说,您保存了模型的 state_dict
(这只是一起描述模型当前实例的各种参数的字典)在 check_point_file
中.
现在,为了将其加载回来,只需反转该过程即可。 check_point_file
仅包含 state_dict
。
它对模型的内部结构一无所知 - 它的架构是什么,它应该如何工作等等。
所以,加载它:
state_dict = torch.load(check_point)
这个state_dict
现在可以复制到您的模型实例上,如下所示:
model.load_state_dict(state_dict)
或者,更简洁地说,
model.load_state_dict(torch.load(check_point))
您收到错误是因为 torch.load(check_point)
返回 state_dict
您分配给 model
.
当您随后调用model(imgs)
时, model
是 OrderedDict
对象(不可调用)。
因此出现错误。
请参阅Serialization Semantics Notes了解更多详情。
除此之外,您的代码对于初学者来说确实是彻底的。干得好!
<小时/>附注您的设备不可知论非常出色!也许您想看看:
model = Autoencoder().cuda()
map_location
torch.load()
的参数关于python - pytorch自动编码器模型评估失败,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54166865/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!