gpt4 book ai didi

r - 枚举因子水平的实例

转载 作者:行者123 更新时间:2023-12-01 01:12:34 25 4
gpt4 key购买 nike

我有一个包含 150000 行长格式的数据框,其中多次出现相同的 id 变量。我正在使用 reshape(来自 stat,而不是 package=reshape(2))将其转换为宽格式。我正在生成一个变量来计算给定级别 id 的每次出现以用作索引。

我已经使用 plyr 处理了一个小数据框,但是对于我的完整 df 来说它太慢了。我可以更有效地编程吗?

我一直在用 reshape 包努力做到这一点,因为我有大约 30 个其他变量。对于每个单独的分析,最好只 reshape 我正在查看的内容(而不是整个 df)。

> # u=id variable with three value variables 
> u<-c(rep("a",4), rep("b", 3),rep("c", 6), rep("d", 5))
> u<-factor(u)
> v<-1:18
> w<-20:37
> x<-40:57
> df<-data.frame(u,v,w,x)
> df
u v w x
1 a 1 20 40
2 a 2 21 41
3 a 3 22 42
4 a 4 23 43
5 b 5 24 44
6 b 6 25 45
7 b 7 26 46
8 c 8 27 47
9 c 9 28 48
10 c 10 29 49
11 c 11 30 50
12 c 12 31 51
13 c 13 32 52
14 d 14 33 53
15 d 15 34 54
16 d 16 35 55
17 d 17 36 56
18 d 18 37 57
>
> library(plyr)
> df2<-ddply(df, .(u), transform, count=rank(u, ties.method="first"))
> df2
u v w x count
1 a 1 20 40 1
2 a 2 21 41 2
3 a 3 22 42 3
4 a 4 23 43 4
5 b 5 24 44 1
6 b 6 25 45 2
7 b 7 26 46 3
8 c 8 27 47 1
9 c 9 28 48 2
10 c 10 29 49 3
11 c 11 30 50 4
12 c 12 31 51 5
13 c 13 32 52 6
14 d 14 33 53 1
15 d 15 34 54 2
16 d 16 35 55 3
17 d 17 36 56 4
18 d 18 37 57 5
> reshape(df2, idvar="u", timevar="count", direction="wide")
u v.1 w.1 x.1 v.2 w.2 x.2 v.3 w.3 x.3 v.4 w.4 x.4 v.5 w.5 x.5 v.6 w.6 x.6
1 a 1 20 40 2 21 41 3 22 42 4 23 43 NA NA NA NA NA NA
5 b 5 24 44 6 25 45 7 26 46 NA NA NA NA NA NA NA NA NA
8 c 8 27 47 9 28 48 10 29 49 11 30 50 12 31 51 13 32 52
14 d 14 33 53 15 34 54 16 35 55 17 36 56 18 37 57 NA NA NA

最佳答案

我仍然无法弄清楚为什么您希望最终将数据集从宽转换为长,因为对我来说,这似乎是一个非常难以处理的数据集。

如果您希望加快因子水平的枚举,可以考虑使用 ave()在基数 R 中,或 .N来自“data.table”包。考虑到您正在处理很多行,您可能需要考虑后者。

首先,让我们整理一些数据:

set.seed(1)
df <- data.frame(u = sample(letters[1:6], 150000, replace = TRUE),
v = runif(150000, 0, 10),
w = runif(150000, 0, 100),
x = runif(150000, 0, 1000))
list(head(df), tail(df))
# [[1]]
# u v w x
# 1 b 6.368412 10.52822 223.6556
# 2 c 6.579344 75.28534 450.7643
# 3 d 6.573822 36.87630 283.3083
# 4 f 9.711164 66.99525 681.0157
# 5 b 5.337487 54.30291 137.0383
# 6 f 9.587560 44.81581 831.4087
#
# [[2]]
# u v w x
# 149995 b 4.614894 52.77121 509.0054
# 149996 f 5.104273 87.43799 391.6819
# 149997 f 2.425936 60.06982 160.2324
# 149998 a 1.592130 66.76113 118.4327
# 149999 b 5.157081 36.90400 511.6446
# 150000 a 3.565323 92.33530 252.4982
table(df$u)
#
# a b c d e f
# 25332 24691 24993 24975 25114 24895

加载我们需要的包:
library(plyr)
library(data.table)

创建我们数据集的“data.table”版本
DT <- data.table(df, key = "u")
DT # Notice that the data are now automatically sorted
# u v w x
# 1: a 6.2378578 96.098294 643.2433
# 2: a 5.0322400 46.806132 544.6883
# 3: a 9.6289786 87.915303 334.6726
# 4: a 4.3393403 1.994383 753.0628
# 5: a 6.2300123 72.810359 579.7548
# ---
# 149996: f 0.6268414 15.608049 669.3838
# 149997: f 2.3588955 40.380824 658.8667
# 149998: f 1.6383619 77.210309 250.7117
# 149999: f 5.1042725 87.437989 391.6819
# 150000: f 2.4259363 60.069820 160.2324
DT[, .N, by = key(DT)] # Like "table"
# u N
# 1: a 25332
# 2: b 24691
# 3: c 24993
# 4: d 24975
# 5: e 25114
# 6: f 24895

现在让我们运行一些基本测试。来自 ave() 的结果没有排序,但它们在“data.table”和“plyr”中,所以我们还应该测试使用 ave()时排序的时序.
system.time(AVE <- within(df, {
count <- ave(as.numeric(u), u, FUN = seq_along)
}))
# user system elapsed
# 0.024 0.000 0.027

# Now time the sorting
system.time(AVE2 <- AVE[order(AVE$u, AVE$count), ])
# user system elapsed
# 0.264 0.000 0.262

system.time(DDPLY <- ddply(df, .(u), transform,
count=rank(u, ties.method="first")))
# user system elapsed
# 0.944 0.000 0.984

system.time(DT[, count := 1:.N, by = key(DT)])
# user system elapsed
# 0.008 0.000 0.004

all(DDPLY == AVE2)
# [1] TRUE
all(data.frame(DT) == AVE2)
# [1] TRUE

“data.table”的语法确实很紧凑,而且速度非常快!

关于r - 枚举因子水平的实例,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14481747/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com