gpt4 book ai didi

python - Keras 训练在第二个 Epoch 后失败

转载 作者:行者123 更新时间:2023-12-01 01:08:13 26 4
gpt4 key购买 nike

编辑这是生成器代码

def generate_batch(self, n_positive=50, negative_ratio=1.0, classification=False):
# TODO: use `frequency` to reinforce positive labels
# TODO: allow n_positive to use entire data set
"""
Generate batches of samples for training

:param n_positive: number of positive training examples
:param negative_ratio: ratio of positive:negative training examples
:param classification: determines type of loss function and network architecture
:return: generator that products batches of training inputs/labels
"""


pairs = self.index()
batch_size = n_positive * (1 + negative_ratio)

# Adjust label based on task
if classification:
neg_label = 0
else:
neg_label = -1

# This creates a generator
idx = 0 # TODO: make `max_recipe_length` config-driven once `structured_document` in Redshift is hstack'd
while True:
# batch = np.zeros((batch_size, 3))
batch = []
# randomly choose positive examples
for idx, (recipe, document) in enumerate(random.sample(pairs, n_positive)):
encoded = self.encode_pair(recipe, document)
# TODO: refactor from append
batch.append([encoded[0], encoded[1], 1])
# logger.info('([encoded[0], encoded[1], 1]) %s', ([encoded[0], encoded[1], 1]))
# batch[idx, :] = ([encoded[0], encoded[1], 1])

# Increment idx by 1
idx += 1

# Add negative examples until reach batch size
while idx < batch_size:
# TODO: [?] optimize how negative sample inputs are constructed
random_index_1, random_index_2 = random.randrange(len(self.ingredients_index)), \
random.randrange(len(self.ingredients_index))
random_recipe, random_document = self.pairs[random_index_1][0], self.pairs[random_index_2][1]

# Check to make sure this is not a positive example
if (random_recipe, random_document) not in self.pairs:
# Add to batch and increment index
encoded = self.encode_pair(random_recipe, random_document)
# TODO: refactor from append
batch.append([encoded[0], encoded[1], neg_label])
# batch[idx, :] = ([encoded[0], encoded[1], neg_label])
idx += 1

# Make sure to shuffle order
np.random.shuffle(batch)
batch = np.array(batch)

ingredients, documents, labels = np.array(batch[:, 0].tolist()), \
np.array(batch[:, 1].tolist()), \
np.array(batch[:, 2].tolist())


yield {'ingredients': ingredients, 'documents': documents}, labels


batch = t.generate_batch(n_positive, negative_ratio=negative_ratio)
model = model(embedding_size, document_size, vocabulary_size=vocabulary_size)
h = model.fit_generator(
batch,
epochs=20,
steps_per_epoch=int(training_size/(n_positive*(negative_ratio+1))),
verbose=2
)
<小时/>

我有以下嵌入网络架构,它在小规模(< 10k 训练大小)上学习我的语料库方面做得很好,但是当我增加训练集大小时,我从 .fit_generator(.fit_generator() 中得到形状错误。 ..)

__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
ingredients (InputLayer) (None, 46) 0
__________________________________________________________________________________________________
documents (InputLayer) (None, 46) 0
__________________________________________________________________________________________________
ingredients_embedding (Embeddin (None, 46, 10) 100000 ingredients[0][0]
__________________________________________________________________________________________________
documents_embedding (Embedding) (None, 46, 10) 100000 documents[0][0]
__________________________________________________________________________________________________
lambda_1 (Lambda) (None, 10) 0 ingredients_embedding[0][0]
__________________________________________________________________________________________________
lambda_2 (Lambda) (None, 10) 0 documents_embedding[0][0]
__________________________________________________________________________________________________
dot_product (Dot) (None, 1) 0 lambda_1[0][0]
lambda_2[0][0]
__________________________________________________________________________________________________
reshape_1 (Reshape) (None, 1) 0 dot_product[0][0]
==================================================================================================
Total params: 200,000
Trainable params: 200,000
Non-trainable params: 0

由以下模型代码生成:

def model(embedding_size, document_size, vocabulary_size=10000, classification=False):
ingredients = Input(
name='ingredients',
shape=(document_size,)
)
documents = Input(
name='documents',
shape=(document_size,)
)

ingredients_embedding = Embedding(name='ingredients_embedding',
input_dim=vocabulary_size,
output_dim=embedding_size)(ingredients)

document_embedding = Embedding(name='documents_embedding',
input_dim=vocabulary_size,
output_dim=embedding_size)(documents)

# sum over the sentence dimension
ingredients_embedding = Lambda(lambda x: K.sum(x, axis=-2))(ingredients_embedding)
# sum over the sentence dimension
document_embedding = Lambda(lambda x: K.sum(x, axis=-2))(document_embedding)

merged = Dot(name='dot_product', normalize=True, axes=-1)([ingredients_embedding, document_embedding])

merged = Reshape(target_shape=(1,))(merged)

# If classification, add extra layer and loss function is binary cross entropy
if classification:
merged = Dense(1, activation='sigmoid')(merged)
m = Model(inputs=[ingredients, documents], outputs=merged)
m.compile(optimizer='Adam', loss='binary_crossentropy', metrics=['accuracy'])

# Otherwise loss function is mean squared error
else:
m = Model(inputs=[ingredients, documents], outputs=merged)
m.compile(optimizer='Adam', loss='mse')

m.summary()

save_model(m)
return m

我可以在 10k 训练样本上训练这个模型,但是当我将训练集大小增加到 100k 记录时,每次在第二个纪元之后都会出现以下错误。

Epoch 1/20
- 8s - loss: 0.3181
Epoch 2/20
- 6s - loss: 0.1086
Epoch 3/20
Traceback (most recent call last):
File "run.py", line 38, in <module>
verbose=2
File "/usr/local/lib/python3.7/site-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.7/site-packages/keras/engine/training.py", line 1418, in fit_generator
initial_epoch=initial_epoch)
File "/usr/local/lib/python3.7/site-packages/keras/engine/training_generator.py", line 217, in fit_generator
class_weight=class_weight)
File "/usr/local/lib/python3.7/site-packages/keras/engine/training.py", line 1211, in train_on_batch
class_weight=class_weight)
File "/usr/local/lib/python3.7/site-packages/keras/engine/training.py", line 751, in _standardize_user_data
exception_prefix='input')
File "/usr/local/lib/python3.7/site-packages/keras/engine/training_utils.py", line 138, in standardize_input_data
str(data_shape))
ValueError: Error when checking input: expected documents to have shape (46,) but got array with shape (1,)

最佳答案

问题是我的生成器产生的数据存在优势。 1 条记录的长度为 43,而不是 46,这导致整个训练失败。我仍然对 ValueError 消息感到困惑。它读取但得到形状为(1,)的数组,而实际上它应该读取但得到形状为(43,)的数组

关于python - Keras 训练在第二个 Epoch 后失败,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55127970/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com