- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我试图指的是 groupby 时间戳。首先,我必须将获得的时间(字符串)转换为日期时间。转换日期时间后,我注意到尽管给出了 pandas 添加日期的特定格式,但我不需要日期。我正在努力删除它并仅保留时间对象,但我没有成功。我所做的任何删除日期的操作都会将数据类型返回到我无法对其执行分组的对象。
示例数据:
https://miratrix.co.uk/ 00:01:55
https://miratrix.co.uk/ 00:02:02
https://miratrix.co.uk/ 00:02:45
https://miratrix.co.uk/ 00:01:22
https://miratrix.co.uk/ 00:02:02
https://miratrix.co.uk/app-marketing-agency/ 00:02:23
https://miratrix.co.uk/get-in-touch/ 00:02:26
https://miratrix.co.uk/get-in-touch/ 00:00:18
https://miratrix.co.uk/get-in-touch/ 00:02:37
https://miratrix.co.uk/ 00:00:31
https://miratrix.co.uk/ 00:02:00
https://miratrix.co.uk/app-store-optimization-... 00:02:25
https://miratrix.co.uk/ 00:03:36
https://miratrix.co.uk/app-marketing-agency/ 00:02:09
https://miratrix.co.uk/get-in-touch/ 00:02:14
https://?page_id=16198/ 00:00:15
https://videos/channel/UCAQfRNzXGD4BQICkO1KQZUA/ 00:09:07
https://miratrix.co.uk/get-in-touch/ 00:01:39
https://miratrix.co.uk/app-marketing-agency/ 00:01:07
到目前为止我已经尝试过
*Returned Object*
ga_organic['NEW Avg. Time on Page'] = pd.to_datetime(ga_organic['Avg. Time on Page'], format="%H:%M:%S").dt.time
*Returned Datetime but when trying to sample only time it returned an object*
ga_organic['NEW Avg. Time on Page'] = ga_organic['Avg. Time on Page'].astype('datetime64[ns]')
ga_organic['NEW Avg. Time on Page'].dt.time
我有一种感觉,关于日期时间有一些我不知道的东西,这就是我遇到这个问题的原因。欢迎任何帮助或指导。
####更新####
感谢ALollz提供时间戳的解决方案。
ga_organic['NEW Avg. Time on Page'] = pd.to_timedelta(ga_organic['Avg. Time on Page'])
但是,当使用此方法使用 GroupBy 时,我仍然遇到相同的错误:
avg_time = ga_organic.groupby(ga_organic.index)['NEW Avg. Time on Page'].mean()
错误:“数据错误:没有要聚合的数字类型”
是否有处理分组日期时间的特定函数?
最佳答案
似乎groupby
无法将timedelta64
识别为数字类型。有多种解决方法,可以使用 numeric_only=False
或使用 total_seconds
。
import pandas as pd
#df = pd.read_clipboard(header=None)
#df[1] = pd.to_timedelta(df[1])
df.groupby(df.index//2)[1].mean()
#DataError: No numeric types to aggregate
# To fix pass `numeric_only=False`
df.groupby(df.index//2)[1].mean(numeric_only=False)
#0 00:01:58.500000
#1 00:02:03.500000
#2 00:02:12.500000
#3 00:01:22
#4 00:01:34
#5 00:02:12.500000
#6 00:02:52.500000
#7 00:01:14.500000
#8 00:05:23
#9 00:01:07
#Name: 1, dtype: timedelta64[ns]
<小时/>
使用简单的float
值和.total_seconds
:
df[1] = df[1].dt.total_seconds()
df.groupby(df.index//2)[1].mean()
#0 118.5
#1 123.5
#2 132.5
#3 82.0
#4 94.0
#5 132.5
#6 172.5
#7 74.5
#8 323.0
#9 67.0
#Name: 1, dtype: float64
可以通过指定unit='s'
的pd.to_timedelta
将其转换回来
关于python - 日期时间 dtype 是对象而不是日期时间,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57773199/
我有两个数据框,它们都有一个 Order ID 和一个 date。 我想在第一个数据帧 df1 中添加一个标志:如果具有相同 order id 和 date 的记录在数据帧 df2,然后添加一个Y:
我正在运行 Python 2.6。我有以下示例,我试图连接 csv 文件中的日期和时间字符串列。根据我设置的 dtype(无与对象),我发现一些我无法解释的行为差异,请参阅帖子末尾的问题 1 和 2。
当尝试通过以下代码将 sklearn 数据集转换为 pandas 数据帧时,出现此错误“ufunc 'add' 不包含签名匹配类型 dtype(' import numpy as np from sk
我正在尝试使用我的代码计算周期图 from scipy import signal import numpy as np import matplotlib.pyplot as plt x = [li
我有 pandas 数据框 df,我想打印出变量列表以及类型和缺失字段的数量(NaN、NA)。 def var_desc(df,dt): print('====================
这个数据类型是如何工作的,我对这个东西很着迷。 1:首先使用python的默认类型:无法工作,引发错误 bins = pd.DataFrame(dtype=[str, int, int], colum
尝试获取小型玩具数据集的直方图时,通过 matplotlib 来自 numpy 的奇怪错误。我只是不确定如何解释错误,这让我很难知道接下来要做什么。 虽然没有找到太多相关信息,但this nltk q
我在减去数据表的两列时遇到问题,我是Python新手,在尝试研究如何解决这个问题失败后,我想知道是否有人有任何见解。我的代码是这样的: response = qc.query(token, sql=q
我运行我的代码,它在第 79 行抛出错误: numpy.core._exceptions.UFuncTypeError: ufunc 'add' did not contain a loop with
我正在尝试创建一个非常简单的程序,它将绘制一条抛物线图,其中 v 是速度,a 是加速度,x是时候了。用户将输入 v 和 a 的值,然后是 v 和 a 以及 x 将确定 y。 我试图用这个来做到这一点:
我构建了一个槽填充(一种序列分类)模型,其结构为:自定义 ELMo 嵌入层 - BiLSTM - CRF。 它训练得很好。但根据预测我得到: 'TypeError: ufunc 'add' did n
是否有比以下方法更优雅的方法来为可能复杂的 dtype 获取相应的真实 numpy dtype? import numpy as np def dtype_to_real(rvs_dtype: np.
对于 jupyter 中的以下 pandas 代码,我试图获取数据类型信息。tab 在 jupyter 中为我提供了有两个属性的信息它同时具有 dtype 和 dtypes import pandas
我有一个用 pandas 加载的 csv 文件,如下所示: classes_dataset2=pd.read_csv("labels.csv") classes_dataset2[0:10] 0
我有一个类似于以下内容的 numpy.dtype: dtype([('value1','>> d = np.dtype([('value1','>> [x[0] for x in d.descr] [
我正在使用 scipy 的 curve_fit 来拟合一些数据的函数,并收到以下错误; Cannot cast array data from dtype('O') to dtype('float64
好吧,似乎在堆栈溢出中提出了几个类似的问题,但似乎没有一个回答正确或正确,也没有描述确切的示例。 我在将数组或列表保存到 hdf5 时遇到问题... 我有几个文件包含 (n, 35) 维度的列表,其中
目前我得到的数组是 arr = array([array([ 2, 7, 8, 12, 14]), array([ 3, 4, 5, 6, 9, 10]), array([0, 1]
我有一个 Pandas 系列。我想检查该系列的数据类型是否在数据类型列表中。像这样的东西: series.dtype not in [pd.dtype('float64'), pd.dtype('fl
我有一个 numpy 数组,我想将其从对象转换为复数。如果我将该数组作为 dtype 字符串并进行转换,则没有问题: In[22]: bane Out[22]: array(['1.000027337
我是一名优秀的程序员,十分优秀!