- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这是此问题的后续问题Keras backend mean function: " 'float' object has no attribute 'dtype' "?
我正在尝试为 Keras 制作一个新的正则化器。这是我的代码
import keras
from keras import initializers
from keras.models import Model, Sequential
from keras.layers import Input, Dense, Activation
from keras import regularizers
from keras import optimizers
from keras import backend as K
kullback_leibler_divergence = keras.losses.kullback_leibler_divergence
def kl_divergence_regularizer(inputs):
means = K.mean((inputs))
rho=0.05
down = 0.05 * K.ones_like(means)
up = (1 - 0.05) * K.ones_like(means)
return 0.5 *(0.01 * (kullback_leibler_divergence(down, means)
+ kullback_leibler_divergence(up, 1 - means)))
model = Sequential([
Dense(900, input_shape=(x_train_s.shape[1],),kernel_initializer='random_uniform',kernel_regularizer=kl_divergence_regularizer),
Activation('elu'),
Dense(x_train_s.shape[1],kernel_initializer='random_uniform'),
Activation('tanh')
])
model.compile(optimizer='adam',loss='mean_squared_error')
model.fit(x_train_s, y_train_s, epochs=5)
这是错误:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
1658 try:
-> 1659 c_op = c_api.TF_FinishOperation(op_desc)
1660 except errors.InvalidArgumentError as e:
InvalidArgumentError: Invalid reduction dimension -1 for input with 0 dimensions. for 'dense_3/weight_regularizer/Sum' (op: 'Sum') with input shapes: [], [] and with computed input tensors: input[1] = <-1>.
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-4-9f4dfbe34659> in <module>
39 Activation('elu'),
40 Dense(x_train_s.shape[1],kernel_initializer='random_uniform'),
---> 41 Activation('tanh')
42 ])
43
C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\sequential.py in __init__(self, layers, name)
91 if layers:
92 for layer in layers:
---> 93 self.add(layer)
94
95 @property
C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\sequential.py in add(self, layer)
163 # and create the node connecting the current layer
164 # to the input layer we just created.
--> 165 layer(x)
166 set_inputs = True
167 else:
C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\base_layer.py in __call__(self, inputs, **kwargs)
429 'You can build it manually via: '
430 '`layer.build(batch_input_shape)`')
--> 431 self.build(unpack_singleton(input_shapes))
432 self.built = True
433
C:\ProgramData\Anaconda3\lib\site-packages\keras\layers\core.py in build(self, input_shape)
864 name='kernel',
865 regularizer=self.kernel_regularizer,
--> 866 constraint=self.kernel_constraint)
867 if self.use_bias:
868 self.bias = self.add_weight(shape=(self.units,),
C:\ProgramData\Anaconda3\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your `' + object_name + '` call to the ' +
90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\base_layer.py in add_weight(self, name, shape, dtype, initializer, regularizer, trainable, constraint)
253 if regularizer is not None:
254 with K.name_scope('weight_regularizer'):
--> 255 self.add_loss(regularizer(weight))
256 if trainable:
257 self._trainable_weights.append(weight)
<ipython-input-4-9f4dfbe34659> in kl_divergence_regularizer(inputs)
15 down = 0.05 * K.ones_like(means)
16 up = (1 - 0.05) * K.ones_like(means)
---> 17 return 0.5 *(0.01 * (kullback_leibler_divergence(down, means)
18 + kullback_leibler_divergence(up, 1 - means)))
19
C:\ProgramData\Anaconda3\lib\site-packages\keras\losses.py in kullback_leibler_divergence(y_true, y_pred)
81 y_true = K.clip(y_true, K.epsilon(), 1)
82 y_pred = K.clip(y_pred, K.epsilon(), 1)
---> 83 return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
84
85
C:\ProgramData\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py in sum(x, axis, keepdims)
1286 A tensor with sum of `x`.
1287 """
-> 1288 return tf.reduce_sum(x, axis, keepdims)
1289
1290
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\util\deprecation.py in new_func(*args, **kwargs)
505 'in a future version' if date is None else ('after %s' % date),
506 instructions)
--> 507 return func(*args, **kwargs)
508
509 doc = _add_deprecated_arg_notice_to_docstring(
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py in reduce_sum_v1(input_tensor, axis, keepdims, name, reduction_indices, keep_dims)
1284 keepdims = deprecation.deprecated_argument_lookup("keepdims", keepdims,
1285 "keep_dims", keep_dims)
-> 1286 return reduce_sum(input_tensor, axis, keepdims, name)
1287
1288
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\util\dispatch.py in wrapper(*args, **kwargs)
178 """Call target, and fall back on dispatchers if there is a TypeError."""
179 try:
--> 180 return target(*args, **kwargs)
181 except (TypeError, ValueError):
182 # Note: convert_to_eager_tensor currently raises a ValueError, not a
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py in reduce_sum(input_tensor, axis, keepdims, name)
1332 gen_math_ops._sum(
1333 input_tensor, _ReductionDims(input_tensor, axis), keepdims,
-> 1334 name=name))
1335
1336
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_math_ops.py in _sum(input, axis, keep_dims, name)
9607 _, _, _op = _op_def_lib._apply_op_helper(
9608 "Sum", input=input, reduction_indices=axis, keep_dims=keep_dims,
-> 9609 name=name)
9610 _result = _op.outputs[:]
9611 _inputs_flat = _op.inputs
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py in _apply_op_helper(self, op_type_name, name, **keywords)
786 op = g.create_op(op_type_name, inputs, output_types, name=scope,
787 input_types=input_types, attrs=attr_protos,
--> 788 op_def=op_def)
789 return output_structure, op_def.is_stateful, op
790
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\util\deprecation.py in new_func(*args, **kwargs)
505 'in a future version' if date is None else ('after %s' % date),
506 instructions)
--> 507 return func(*args, **kwargs)
508
509 doc = _add_deprecated_arg_notice_to_docstring(
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in create_op(***failed resolving arguments***)
3298 input_types=input_types,
3299 original_op=self._default_original_op,
-> 3300 op_def=op_def)
3301 self._create_op_helper(ret, compute_device=compute_device)
3302 return ret
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in __init__(self, node_def, g, inputs, output_types, control_inputs, input_types, original_op, op_def)
1821 op_def, inputs, node_def.attr)
1822 self._c_op = _create_c_op(self._graph, node_def, grouped_inputs,
-> 1823 control_input_ops)
1824
1825 # Initialize self._outputs.
C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
1660 except errors.InvalidArgumentError as e:
1661 # Convert to ValueError for backwards compatibility.
-> 1662 raise ValueError(str(e))
1663
1664 return c_op
ValueError: Invalid reduction dimension -1 for input with 0 dimensions. for 'dense_3/weight_regularizer/Sum' (op: 'Sum') with input shapes: [], [] and with computed input tensors: input[1] = <-1>.
我该如何解决这个问题?我需要 0.05 和平均值之间的 KL 散度计算 i 上的以下总和:
KL=sum(0.05*\log(0.05/mean[i]))
最佳答案
为了打印手段,
means = K.means((input), axis=1)
...
means_ = sess.run(means, feed_dict={x: , y: })
print(means_)
关于python - 如何为 Keras 实现 KL 散度正则化?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57780053/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!