- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有 2 个 CSV 文件,如下所示。
差异
,其中...
Book_date
...App_date
的日期范围内:差异
= 差异App_date
> 和 Occur_date
csv_1
Mobile_Number Book_Date App_Date
503477334 2018-10-12 2018-10-18
506002884 2018-10-12 2018-10-19
501022162 2018-10-12 2018-10-16
503487338 2018-10-13 2018-10-13
506012887 2018-10-13 2018-10-21
503427339 2018-10-14 2018-10-17
csv_2
Mobile_Number Occur_Date
503477334 2018-10-16
506002884 2018-10-21
501022162 2018-10-15
503487338 2018-10-13
501428449 2018-10-18
506012887 2018-10-14
我想要在 csv_1 中添加一个新列,其中如果手机号码出现在 csv_2 中的 Book_date 和 App_date 的日期范围内,则 App_date 与 Occur_date 之间的差值或 NaN(如果该手机号码未出现在该日期范围内)。输出应该是
输出
Mobile_Number Book_Date App_Date Difference
503477334 2018-10-12 2018-10-18 2
506002884 2018-10-12 2018-10-19 -2
501022162 2018-10-12 2018-10-16 1
503487338 2018-10-13 2018-10-13 0
506012887 2018-10-13 2018-10-21 7
503427339 2018-10-14 2018-10-17 NaN
编辑:
如果我想根据上述两个 csv 文件的唯一类别和 mobile_number 对其进行过滤。如何做同样的事情?
csv_1
Category Mobile_Number Book_Date App_Date
A 503477334 2018-10-12 2018-10-18
B 503477334 2018-10-07 2018-10-16
C 501022162 2018-10-12 2018-10-16
A 503487338 2018-10-13 2018-10-13
C 506012887 2018-10-13 2018-10-21
E 503427339 2018-10-14 2018-10-17
csv_2
Category Mobile_Number Occur_Date
A 503477334 2018-10-16
B 503477334 2018-10-13
A 501022162 2018-10-15
A 503487338 2018-10-13
F 501428449 2018-10-18
C 506012887 2018-10-14
我希望根据 Mobile_Number 和类别过滤输出
输出
Category Mobile_Number Book_Date App_Date Difference
A 503477334 2018-10-12 2018-10-18 2
B 503477334 2018-10-07 2018-10-16 3
C 501022162 2018-10-12 2018-10-16 NaN
A 503487338 2018-10-13 2018-10-13 0
C 506012887 2018-10-13 2018-10-21 7
E 503427339 2018-10-14 2018-10-17 NaN
最佳答案
使用Series.map
对于与 Mobile_Number
匹配的新 Series
以及列之间的测试值,请使用 Series.between
,然后通过掩码使用 numpy.where
赋值:
df1['Book_Date'] = pd.to_datetime(df1['Book_Date'])
df1['App_Date'] = pd.to_datetime(df1['App_Date'])
df2['Occur_Date'] = pd.to_datetime(df2['Occur_Date'])
s1 = df2.drop_duplicates('Mobile_Number').set_index('Mobile_Number')['Occur_Date']
s2 = df1['Mobile_Number'].map(s1)
m = s2.between(df1['Book_Date'], df1['App_Date'])
#solution with no mask
df1['Difference1'] = df1['App_Date'].sub(s2).dt.days
#solution with test between
df1['Difference2'] = np.where(m, df1['App_Date'].sub(s2).dt.days, np.nan)
print (df1)
Mobile_Number Book_Date App_Date Difference Difference1 Difference2
0 503477334 2018-10-12 2018-10-18 2018-10-16 2.0 2.0
1 506002884 2018-10-12 2018-10-19 2018-10-21 -2.0 NaN
2 501022162 2018-10-12 2018-10-16 2018-10-15 1.0 1.0
3 503487338 2018-10-13 2018-10-13 2018-10-13 0.0 0.0
4 506012887 2018-10-13 2018-10-21 2018-10-14 7.0 7.0
5 503427339 2018-10-14 2018-10-17 NaT NaN NaN
编辑:
您可以使用 merge
代替 map
来连接 2 列:
df1['Book_Date'] = pd.to_datetime(df1['Book_Date'])
df1['App_Date'] = pd.to_datetime(df1['App_Date'])
df2['Occur_Date'] = pd.to_datetime(df2['Occur_Date'])
df3 = df1.merge(df2, on=['Category','Mobile_Number'], how='left')
print (df3)
Category Mobile_Number Book_Date App_Date Occur_Date
0 A 503477334 2018-10-12 2018-10-18 2018-10-16
1 B 503477334 2018-10-07 2018-10-16 2018-10-13
2 C 501022162 2018-10-12 2018-10-16 NaT
3 A 503487338 2018-10-13 2018-10-13 2018-10-13
4 C 506012887 2018-10-13 2018-10-21 2018-10-14
5 E 503427339 2018-10-14 2018-10-17 NaT
m = df3['Occur_Date'].between(df3['Book_Date'], df3['App_Date'])
#print (m)
df3['Difference2'] = np.where(m, df3['App_Date'].sub(df3['Occur_Date']).dt.days, np.nan)
print (df3)
Category Mobile_Number Book_Date App_Date Occur_Date Difference2
0 A 503477334 2018-10-12 2018-10-18 2018-10-16 2.0
1 B 503477334 2018-10-07 2018-10-16 2018-10-13 3.0
2 C 501022162 2018-10-12 2018-10-16 NaT NaN
3 A 503487338 2018-10-13 2018-10-13 2018-10-13 0.0
4 C 506012887 2018-10-13 2018-10-21 2018-10-14 7.0
5 E 503427339 2018-10-14 2018-10-17 NaT NaN
关于python - Pandas 中两个特定日期时间范围之间出现的数字,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59456738/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!