gpt4 book ai didi

r - R中的高效随机抽样

转载 作者:行者123 更新时间:2023-12-01 00:12:03 24 4
gpt4 key购买 nike

从数据框中,我尝试随机抽样 1:20 的观察结果,其中每个观察次数我想将过程复制 4 次。我想出了这个可行的解决方案,但它很慢,因为它是由于 crossing(),涉及多次处理大型数据帧功能。任何人都可以指出我更有效的解决方案吗?

library(tidyverse)

mtcars %>%
group_by(cyl) %>%
nest() %>%
crossing(n_random_sample = 1:20, n_replicate = 1:4) %>%
mutate(res = map2_dbl(data, n_random_sample, function(data, n) {

data %>%
sample_n(n, replace = TRUE) %>%
summarise(mean_mpg = mean(mpg)) %>%
pull(mean_mpg)

}))
#> # A tibble: 240 x 5
#> cyl data n_random_sample n_replicate res
#> <dbl> <list> <int> <int> <dbl>
#> 1 6 <tibble [7 × 10]> 1 1 17.8
#> 2 6 <tibble [7 × 10]> 1 2 21
#> 3 6 <tibble [7 × 10]> 1 3 19.2
#> 4 6 <tibble [7 × 10]> 1 4 18.1
#> 5 6 <tibble [7 × 10]> 2 1 19.6
#> 6 6 <tibble [7 × 10]> 2 2 19.4
#> 7 6 <tibble [7 × 10]> 2 3 19.6
#> 8 6 <tibble [7 × 10]> 2 4 20.4
#> 9 6 <tibble [7 × 10]> 3 1 20.1
#> 10 6 <tibble [7 × 10]> 3 2 18.9
#> # ... with 230 more rows

reprex package 创建于 2018-11-19 (v0.2.1)

编辑:我现在正在处理一个更大的数据集。是否可以使用 data.table 更有效地做到这一点?

最佳答案

这是一个替代解决方案,它对原始数据集进行子集化并使用函数选择行样本,而不是使用 nest 创建子数据集并将它们存储为列表变量,然后使用 map 选择一个示例:

library(tidyverse)

# create function to sample rows
f = function(c, n) {
mtcars %>%
filter(cyl == c) %>%
sample_n(n, replace = TRUE) %>%
summarise(mean_mpg = mean(mpg)) %>%
pull(mean_mpg)
}

# vectorise function
f = Vectorize(f)

# set seed for reproducibility
set.seed(11)

tbl_df(mtcars) %>%
distinct(cyl) %>%
crossing(n_random_sample = 1:20, n_replicate = 1:4) %>%
mutate(res = f(cyl, n_random_sample))

# # A tibble: 240 x 4
# cyl n_random_sample n_replicate res
# <dbl> <int> <int> <dbl>
# 1 6 1 1 21
# 2 6 1 2 21
# 3 6 1 3 18.1
# 4 6 1 4 21
# 5 6 2 1 20.4
# 6 6 2 2 21.2
# 7 6 2 3 20.4
# 8 6 2 4 19.6
# 9 6 3 1 18.4
#10 6 3 2 19.6
# # ... with 230 more rows

关于r - R中的高效随机抽样,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53376574/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com