gpt4 book ai didi

cuda - 使用 cuSPARSE 在 CUDA 中进行稀疏矩阵矩阵乘法

转载 作者:行者123 更新时间:2023-11-30 23:53:22 36 4
gpt4 key购买 nike

我正在使用 cuSPARSE 库在 Nvidia K40 上对稀疏矩阵-矩阵乘法进行基准测试。我正在创建自己的 CSR 格式的稀疏矩阵,并且我正在使用 cuSPARSE 库的 cusparseXcsrgemmNnz 例程。但是,随着我增加数据大小,调用 cusparseXcsrgemmNnz 时发生错误,即未返回 CUSPARSE_STATUS_SUCCESS。此外,cudaMemcpy 失败并且未返回 CUDA_SUCCESS。该代码适用于 8 x 816 x 16 矩阵。但是,从 32 x 32 开始,会观察到此错误。

编辑:我从 cusparseXcsrgemmNnz 收到第三个矩阵大小的 CUSPARSE_STATUS_EXECUTION_FAILED。对于前两个矩阵大小,执行是正确的。

#include <cusparse_v2.h>
#include <stdio.h>
#include <time.h>
#include <sys/time.h>

// error check macros
#define CUSPARSE_CHECK(x) {cusparseStatus_t _c=x; if (_c != CUSPARSE_STATUS_SUCCESS) {printf("cusparse fail: %d, line: %d\n", (int)_c, __LINE__); exit(-1);}}

#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)


double timerval()
{
struct timeval st;
gettimeofday(&st, NULL);
return (st.tv_sec+st.tv_usec*1e-6);
}

// perform sparse-matrix multiplication C=AxB
int main(){
double avg_time = 0, s_time, e_time;

cusparseStatus_t stat;
cusparseHandle_t hndl;
cusparseMatDescr_t descrA, descrB, descrC;
int *csrRowPtrA, *csrRowPtrB, *csrRowPtrC, *csrColIndA, *csrColIndB, *csrColIndC;
int *h_csrRowPtrA, *h_csrRowPtrB, *h_csrRowPtrC, *h_csrColIndA, *h_csrColIndB, *h_csrColIndC,*pos;
float *csrValA, *csrValB, *csrValC, *h_csrValA, *h_csrValB, *h_csrValC;
int nnzA, nnzB, nnzC;
int m=4,n,k,loop;
int i,j;
int iterations;
for (iterations=0;iterations<10;iterations++)
{
m *=2;
n = m;
k = m;
//density of the sparse matrix to be created. Assume 5% density.
double dense_const = 0.05;
int temp5, temp6,temp3,temp4;
int density=(m*n)*(dense_const);
nnzA = density;
nnzB = density;
h_csrRowPtrA = (int *)malloc((m+1)*sizeof(int));
h_csrRowPtrB = (int *)malloc((n+1)*sizeof(int));
h_csrColIndA = (int *)malloc(density*sizeof(int));
h_csrColIndB = (int *)malloc(density*sizeof(int));
h_csrValA = (float *)malloc(density*sizeof(float));
h_csrValB = (float *)malloc(density*sizeof(float));
if ((h_csrRowPtrA == NULL) || (h_csrRowPtrB == NULL) || (h_csrColIndA == NULL) || (h_csrColIndB == NULL) || (h_csrValA == NULL) || (h_csrValB == NULL))
{printf("malloc fail\n"); return -1;}

//position array for random initialisation of positions in input matrix
pos= (int *)calloc((m*n), sizeof(int));
int temp,temp1;

// printf("the density is %d\n",density);
// printf("check 1:\n");

//randomly initialise positions
for(i=0;i<density;i++)
{
temp1=rand()%(m*n);
pos[i]=temp1;

}
// printf("check 2:\n");

//sort the 'pos' array
for (i = 0 ; i < density; i++) {
int d = i;
int t;

while ( d > 0 && pos[d] < pos[d-1]) {
t = pos[d];
pos[d] = pos[d-1];
pos[d-1] = t;
d--;
}
}
// initialise with non zero elements and extract column and row ptr vector
j=1;
//ja[0]=1;

int p=0;
int f=0;

for(i = 0; i < density; i++)
{
temp=pos[i];
h_csrValA[f] = rand();
h_csrValB[f] = rand();
h_csrColIndA[f] = temp%m;
h_csrColIndB[f] = temp%m;
f++;
p++;
temp5= pos[i];
temp6=pos[i+1];
temp3=temp5-(temp5%m);
temp4=temp6-(temp6%m);

if(!(temp3== temp4))
{
if((temp3+m==temp6))
{}
else
{
h_csrRowPtrA[j]=p;
h_csrRowPtrB[j]=p;
j++;
}

}
}

// transfer data to device

cudaMalloc(&csrRowPtrA, (m+1)*sizeof(int));
cudaMalloc(&csrRowPtrB, (n+1)*sizeof(int));
cudaMalloc(&csrColIndA, density*sizeof(int));
cudaMalloc(&csrColIndB, density*sizeof(int));
cudaMalloc(&csrValA, density*sizeof(float));
cudaMalloc(&csrValB, density*sizeof(float));
cudaCheckErrors("cudaMalloc fail");
cudaMemcpy(csrRowPtrA, h_csrRowPtrA, (m+1)*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(csrRowPtrB, h_csrRowPtrB, (n+1)*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(csrColIndA, h_csrColIndA, density*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(csrColIndB, h_csrColIndB, density*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(csrValA, h_csrValA, density*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(csrValB, h_csrValB, density*sizeof(float), cudaMemcpyHostToDevice);
cudaCheckErrors("cudaMemcpy fail");

// set cusparse matrix types
CUSPARSE_CHECK(cusparseCreate(&hndl));
stat = cusparseCreateMatDescr(&descrA);
CUSPARSE_CHECK(stat);
stat = cusparseCreateMatDescr(&descrB);
CUSPARSE_CHECK(stat);
stat = cusparseCreateMatDescr(&descrC);
CUSPARSE_CHECK(stat);
stat = cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL);
CUSPARSE_CHECK(stat);
stat = cusparseSetMatType(descrB, CUSPARSE_MATRIX_TYPE_GENERAL);
CUSPARSE_CHECK(stat);
stat = cusparseSetMatType(descrC, CUSPARSE_MATRIX_TYPE_GENERAL);
CUSPARSE_CHECK(stat);
stat = cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO);
CUSPARSE_CHECK(stat);
stat = cusparseSetMatIndexBase(descrB, CUSPARSE_INDEX_BASE_ZERO);
CUSPARSE_CHECK(stat);
stat = cusparseSetMatIndexBase(descrC, CUSPARSE_INDEX_BASE_ZERO);
CUSPARSE_CHECK(stat);
cusparseOperation_t transA = CUSPARSE_OPERATION_NON_TRANSPOSE;
cusparseOperation_t transB = CUSPARSE_OPERATION_NON_TRANSPOSE;

// figure out size of C
int baseC;
// nnzTotalDevHostPtr points to host memory
int *nnzTotalDevHostPtr = &nnzC;
stat = cusparseSetPointerMode(hndl, CUSPARSE_POINTER_MODE_HOST);
CUSPARSE_CHECK(stat);
cudaMalloc((void**)&csrRowPtrC, sizeof(int)*(m+1));
cudaCheckErrors("cudaMalloc fail");

s_time=timerval();

stat = cusparseXcsrgemmNnz(hndl, transA, transB, m, n, k,
descrA, nnzA, csrRowPtrA, csrColIndA,
descrB, nnzB, csrRowPtrB, csrColIndB,
descrC, csrRowPtrC, nnzTotalDevHostPtr );
CUSPARSE_CHECK(stat);
if (NULL != nnzTotalDevHostPtr){
nnzC = *nnzTotalDevHostPtr;}
else{
cudaMemcpy(&nnzC, csrRowPtrC+m, sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(&baseC, csrRowPtrC, sizeof(int), cudaMemcpyDeviceToHost);
cudaCheckErrors("cudaMemcpy fail");
nnzC -= baseC;}
cudaMalloc((void**)&csrColIndC, sizeof(int)*nnzC);
cudaMalloc((void**)&csrValC, sizeof(float)*nnzC);
cudaCheckErrors("cudaMalloc fail");
// perform multiplication C = A*B

for(loop=0;loop<1000;loop++)
{
stat = cusparseScsrgemm(hndl, transA, transB, m, n, k,
descrA, nnzA,
csrValA, csrRowPtrA, csrColIndA,
descrB, nnzB,
csrValB, csrRowPtrB, csrColIndB,
descrC,
csrValC, csrRowPtrC, csrColIndC);
CUSPARSE_CHECK(stat);
}

e_time=timerval();

avg_time=avg_time/1000;
// copy result (C) back to host
h_csrRowPtrC = (int *)malloc((m+1)*sizeof(int));
h_csrColIndC = (int *)malloc(nnzC *sizeof(int));
h_csrValC = (float *)malloc(nnzC *sizeof(float));
if ((h_csrRowPtrC == NULL) || (h_csrColIndC == NULL) || (h_csrValC == NULL))
{printf("malloc fail\n"); return -1;}
cudaMemcpy(h_csrRowPtrC, csrRowPtrC, (m+1)*sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(h_csrColIndC, csrColIndC, nnzC*sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(h_csrValC, csrValC, nnzC*sizeof(float), cudaMemcpyDeviceToHost);
cudaCheckErrors("cudaMemcpy fail");

printf ("\n Input size: %d x %d ,Time: %lf and density is %d \n", m,n, avg_time, density);

cudaFree(csrRowPtrC);
cudaFree(csrColIndC);
cudaFree(csrValC);

cudaFree(csrRowPtrA);
cudaFree(csrColIndA);
cudaFree(csrValA);

cudaFree(csrRowPtrB);
cudaFree(csrColIndB);
cudaFree(csrValB);

free(h_csrRowPtrC);
free(h_csrColIndC);
free(h_csrValC);

free(h_csrRowPtrA);
free(h_csrColIndA);
free(h_csrValA);

free(h_csrRowPtrB);
free(h_csrColIndB);
free(h_csrValB);
}
return 0;

最佳答案

您似乎从 here 中提取了部分代码

如该帖子所示:

a failure in cusparseXcsrgemmNnz could indicate an underlying problem in CSR matrix formatting.

我很确定这就是问题所在。生成格式正确的 CSR matrix 的过程坏了。

为证明这一点,请在您发布的代码中指定注释之前添加以下代码:

printf("A RowPtrs: \n");
for (int i = 0; i < m+1; i++) printf("%d ", h_csrRowPtrA[i]);
printf("\nA ColInds: \n");
for (int i = 0; i < nnzA; i++) printf("%d ", h_csrColIndA[i]);
printf("\nB RowPtrs: \n");
for (int i = 0; i < n+1; i++) printf("%d ", h_csrRowPtrB[i]);
printf("\nB ColInds: \n");
for (int i = 0; i < nnzB; i++) printf("%d ", h_csrColIndB[i]);
printf("\n");

// add the above code before this comment:
// transfer data to device

当我这样做、重新编译并运行时,我得到如下所示的输出:

$ ./t730
A RowPtrs:
0 1 2 3 0 0 0 0 0
A ColInds:
6 7 1
B RowPtrs:
0 1 2 3 0 0 0 0 0
B ColInds:
6 7 1

Input size: 8 x 8 ,Time: 0.000000 and density is 3
A RowPtrs:
0 1 2 3 4 5 6 8 9 12 959542853 1886614883 1702064737 1299346243 1918980205 1232301409 1766154068
A ColInds:
11 6 4 12 11 10 2 13 3 2 8 11
B RowPtrs:
-1688500168 1 2 3 4 5 6 8 9 12 0 0 0 0 0 0 0
B ColInds:
11 6 4 12 11 10 2 13 3 2 8 11
cusparse fail: 6, line: 193

我们看到第一组 CSR 格式的 AB 矩阵直到并包括以 Input size: 8 x 8 开头的行。 .. 似乎已完成且没有错误,但格式实际上已损坏。空行的行指针不从零开始(行指针不允许向后移动),它们的行指针从最后填充的行开始(这样每行的非零元素数等于当前行指针减去前一行指针),行指针序列中的最后一个值指向矩阵中最后一个元素之后的一个元素(即 CSR 行指针数组中的最后一个值是 nnz,非零元素的数量)。

下一组A和B矩阵(对应16x16 pass)明显坏了。至少,A 和 B CSR 格式矩阵中的行指针明显超出范围。

您用于创建 CSR 矩阵的代码刚刚损坏。我建议您研究 CSR 矩阵并创建一个工具来验证您将以这种方式随机创建的任何矩阵。 CUSP具有矩阵验证功能,我相信您还可以使用其他 CSR 矩阵格式验证功能。

关于cuda - 使用 cuSPARSE 在 CUDA 中进行稀疏矩阵矩阵乘法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29688627/

36 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com