- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我使用 np.save('X', X)
保存了 scipy csr 矩阵。当我用 np.load('X.npy')
加载它时,我得到这个签名:
array(<240760x110493 sparse matrix of type '<class 'numpy.float64'>'
with 20618831 stored elements in Compressed Sparse Row format>, dtype=object)
但是,我无法使用索引(例如 X[0,0]
或 X[:10,:10] or X[0]
都会给出错误 IndexError: too many indices for array
)并调用 .shape
来访问此数据。返回()
。
有没有办法访问这些数据,或者它现在是否已损坏?
由于有 3 个选项可以保存/加载矩阵,因此我进行了速度比较,看看哪个最适合我的稀疏矩阵:
%timeit -n1 scipy.io.savemat('tt', {'t': X})
1 loops, best of 3: 66.3 ms per loop
timeit -n1 scipy.io.mmwrite('tt_mm', X)
1 loops, best of 3: 7.55 s per loop
timeit -n1 np.save('tt_np', X)
1 loops, best of 3: 188 ms per loop
timeit -n1 scipy.io.loadmat('tt')
1 loops, best of 3: 9.78 ms per loop
%timeit -n1 scipy.io.mmread('tt_mm')
1 loops, best of 3: 5.72 s per loop
%timeit -n1 np.load('tt_np.npy')
1 loops, best of 3: 150 ms per loop
结果是mmread/mmwrite
非常低(大约慢了 100 倍),并且 savemat/loadmat
比 save/load
快 3-10 倍.
最佳答案
让我们关注打印中的所有线索
array(<240760x110493 sparse matrix of type '<class 'numpy.float64'>'
with 20618831 stored elements in Compressed Sparse Row format>, dtype=object)
最外面:
array(....,dtype=object)
稀疏矩阵不是规则数组;对于np.save
来说,它只是一个Python对象。因此它将其包装在 dtype=object 中并保存。它是一个 0d 数组(因此是 ()
形状),因此所有索引尝试都会失败。尝试一下
M=arr.item() # or
M=arr[()]
现在 M
应显示为:
sparse matrix of type '<class 'numpy.float64'>'
with 20618831 stored elements in Compressed Sparse Row format
具有诸如M.shape
之类的属性。 M.A
将显示密集形式,因为它太大而无法实现。
关于python - 加载用 np.save 保存的稀疏矩阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35356933/
我在服务器上 checkout 了一个 git 存储库。该存储库过去在根目录下包含所有相关文件,但我必须进行一些更改,现在我有两个文件夹,src 和 dist,我想跟踪这两个文件夹. 我遇到的问题是,
我很难弄清楚 VkDescriptorSetLayoutBinding::binding 的任何用例,这是结构: struct VkDescriptorSetLayoutBinding { u
Python中能否有效获取稀疏向量的范数? 我尝试了以下方法: from scipy import sparse from numpy.linalg import norm vector1 = spa
我正在尝试找出为什么这段代码不对数组进行排序... 任意向量。 x = array([[3, 2, 4, 5, 7, 4, 3, 4, 3, 3, 1, 4, 6, 3, 2, 4, 3, 2]])
有谁知道如何压缩(编码)稀疏 vector ?稀疏 vector 表示有许多“0”的 1xN 矩阵。 例如 10000000000001110000000000000000100000000 上面是稀
我使用稀疏高斯过程进行 Rasmussen 回归。[http://www.tsc.uc3m.es/~miguel/downloads.php][1] 预测平均值的语法是: [~, mu_1, ~, ~
我在朴素贝叶斯分类器中使用 Mahout API。其中一个功能是 SparseVectorsFromSequenceFiles虽然我已经尝试过旧的谷歌搜索,但我仍然不明白什么是稀疏 vector 。最
我正在尝试将JavaScript稀疏数组映射到C#表示形式。 建议这样做的方法是什么? 它正在考虑使用一个字典,该字典包含在原始数组中包含值的原始词列表。 还有其他想法吗? 谢谢! 最佳答案 注意 针
如果我想求解一个完整上三角系统,我可以调用linsolve(A,b,'UT')。然而,这目前不支持稀疏矩阵。我该如何克服这个问题? 最佳答案 UT 和 LT 系统是最容易解决的系统之一。读一读on t
我有一个带有 MultiIndex 的 Pandas DataFrame。 MultiIndex 的值在 (0,0) 到 (1000,1000) 范围内,该列有两个字段 p 和 q. 但是,DataF
我目前正在实现一个小型有限元模拟。使用 Python/Numpy,我正在寻找一种有效的方法来创建全局刚度矩阵: 1)我认为应该使用coo_matrix()从较小的单元刚度矩阵创建稀疏矩阵。但是,我可以
a , b是 1D numpy ndarray与整数数据类型具有相同的大小。 C是一个 2D scipy.sparse.lil_matrix . 如果索引[a, b]包含重复索引,C[a, b] +=
我有一个大的、连通的、稀疏的邻接表形式的图。我想找到两个尽可能远的顶点,即 diameter of the graph以及实现它的两个顶点。 对于不同的应用程序,我对无向和有向情况下的这个问题都很感兴
上下文:我将 Eigen 用于人工神经网络,其中典型维度为每层约 1000 个节点。所以大部分操作是将大小为 ~(1000,1000) 的矩阵 M 与大小为 1000 的 vector 或一批 B v
我有一些大小合适的矩阵 (2000*2000),我希望在矩阵的元素中有符号表达式 - 即 .9**b + .8**b + .7**b ... 是一个元素的例子。矩阵非常稀疏。 我通过添加中间计算来创建
在 R 或 C++ 中是否有一种快速填充(稀疏)矩阵的方法: A, B, 0, 0, 0 C, A, B, 0, 0 0, C, A, B, 0 0, 0, C, A, B 0, 0, 0, C, A
我有一个大的稀疏 numpy/scipy 矩阵,其中每一行对应于高维空间中的一个点。我想进行以下类型的查询: 给定一个点P(矩阵中的一行)和一个距离epsilon,找到与epsilon距离最大的所有点
假设我有一个 scipy.sparse.csr_matrix 代表下面的值 [[0 0 1 2 0 3 0 4] [1 0 0 2 0 3 4 0]] 我想就地计算非零值的累积和,这会将数组更改为:
我了解如何在 Git 中配置稀疏 checkout ,但我想知道是否可以消除前导目录。例如,假设我有一个 Git 存储库,其文件夹结构如下: 文件夹1/foo 文件夹2/foo/bar/stuff 文
根据 this thread , Git 中的排除 sparse-checkout feature应该实现。是吗? 假设我有以下结构: papers/ papers/... presentations
我是一名优秀的程序员,十分优秀!