- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个字典的 RDD,我想获得一个仅包含不同元素的 RDD。但是,当我尝试调用
rdd.distinct()
PySpark 给我以下错误
TypeError: unhashable type: 'dict'
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:207)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:125)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:342)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
16/02/19 16:55:56 WARN TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0, localhost): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/Cellar/apache-spark/1.6.0/libexec/python/lib/pyspark.zip/pyspark/worker.py", line 111, in main
process()
File "/usr/local/Cellar/apache-spark/1.6.0/libexec/python/lib/pyspark.zip/pyspark/worker.py", line 106, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/local/Cellar/apache-spark/1.6.0/libexec/python/lib/pyspark.zip/pyspark/rdd.py", line 2346, in pipeline_func
File "/usr/local/Cellar/apache-spark/1.6.0/libexec/python/lib/pyspark.zip/pyspark/rdd.py", line 2346, in pipeline_func
File "/usr/local/Cellar/apache-spark/1.6.0/libexec/python/lib/pyspark.zip/pyspark/rdd.py", line 317, in func
File "/usr/local/Cellar/apache-spark/1.6.0/libexec/python/lib/pyspark.zip/pyspark/rdd.py", line 1776, in combineLocally
File "/usr/local/Cellar/apache-spark/1.6.0/libexec/python/lib/pyspark.zip/pyspark/shuffle.py", line 238, in mergeValues
d[k] = comb(d[k], v) if k in d else creator(v)
TypeError: unhashable type: 'dict'
我确实在字典中有一个键,可以将其用作不同的元素,但文档没有提供有关如何解决此问题的任何线索。
编辑:内容由字符串、字符串数组和数字字典组成
编辑2:字典示例...我希望具有相同“data_fingerprint”键的字典被视为相等:
{"id":"4eece341","data_fingerprint":"1707db7bddf011ad884d132bf80baf3c"}
谢谢
最佳答案
正如 @zero323 在他的评论中指出的那样,您必须决定如何比较字典,因为它们不可散列。一种方法是对键进行排序(因为它们不按任何特定顺序),例如按字典顺序。然后创建一个以下形式的字符串:
def dict_to_string(dict):
...
return 'key1|value1|key2|value2...|keyn|valuen'
如果您嵌套了不可散列的对象,则必须递归地执行此操作。
现在您可以将 RDD 转换为与字符串作为键(或其某种哈希值)配对
pairs = dictRDD.map(lambda d: (dict_to_string(d), d))
要得到你想要的东西,你只需要减少关键作为休闲
distinctDicts = pairs.reduceByKey(lambda val1, val2: val1).values()
关于python - 如何在 PySpark 中获得不同的字典 RDD?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35509919/
我在数据框中有一列月份数字,想将其更改为月份名称,所以我使用了这个: df['monthName'] = df['monthNumber'].apply(lambda x: calendar.mont
Pyspark 中是否有一个 input() 函数,我可以通过它获取控制台输入。如果是,请详细说明一下。 如何在 PySpark 中编写以下代码: directory_change = input("
我们正在 pyspark 中构建数据摄取框架,并想知道处理数据类型异常的最佳方法是什么。基本上,我们希望有一个拒绝表来捕获所有未与架构确认的数据。 stringDf = sparkSession.cr
我正在开发基于一组 ORC 文件的 spark 数据框的 sql 查询。程序是这样的: from pyspark.sql import SparkSession spark_session = Spa
我有一个 Pyspark 数据框( 原始数据框 )具有以下数据(所有列都有 字符串 数据类型): id Value 1 103 2
我有一台配置了Redis和Maven的服务器 然后我执行以下sparkSession spark = pyspark .sql .SparkSession .builder .master('loca
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有: +---+-------+-------+ | id| var1| var2| +---+-------+-------+ | a|[1,2,3]|[1,2,3]| | b|[2,
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有一个带有多个数字列的 pyspark DF,我想为每一列根据每个变量计算该行的十分位数或其他分位数等级。 这对 Pandas 来说很简单,因为我们可以使用 qcut 函数为每个变量创建一个新列,如
我有以下使用 pyspark.ml 包进行线性回归的代码。但是,当模型适合时,我在最后一行收到此错误消息: IllegalArgumentException: u'requirement failed
我有一个由 | 分隔的平面文件(管道),没有引号字符。示例数据如下所示: SOME_NUMBER|SOME_MULTILINE_STRING|SOME_STRING 23|multiline text
给定如下模式: root |-- first_name: string |-- last_name: string |-- degrees: array | |-- element: struc
我有一个 pyspark 数据框如下(这只是一个简化的例子,我的实际数据框有数百列): col1,col2,......,col_with_fix_header 1,2,.......,3 4,5,.
我有一个数据框 +------+--------------------+-----------------+---- | id| titulo |tipo | formac
我从 Spark 数组“df_spark”开始: from pyspark.sql import SparkSession import pandas as pd import numpy as np
如何根据行号/行索引值删除 Pyspark 中的行值? 我是 Pyspark(和编码)的新手——我尝试编码一些东西,但它不起作用。 最佳答案 您不能删除特定的列,但您可以使用 filter 或其别名
我有一个循环生成多个因子表的输出并将列名存储在列表中: | id | f_1a | f_2a | |:---|:----:|:-----| |1 |1.2 |0.95 | |2 |0.7
我正在尝试将 hql 脚本转换为 pyspark。我正在努力如何在 groupby 子句之后的聚合中实现 case when 语句的总和。例如。 dataframe1 = dataframe0.gro
我想添加新的 2 列值服务 arr 第一个和第二个值 但我收到错误: Field name should be String Literal, but it's 0; production_targe
我是一名优秀的程序员,十分优秀!