- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在处理一些机器学习任务,我想将每一行从“编号对象”更改为“按某些属性对象排序”。
例如,我有 2 个团队中的 5 个英雄,由他们的统计数据(dN_%stat% 和 rN_%stat%)表示,我想要的是按统计数据编号 3,4,0,2 对每个团队中的英雄进行排序所以第一个最强,依此类推。
这是我当前的代码,但它非常慢,所以我想使用 native pandas 对象和操作:
def sort_heroes(df):
for match_id in df.index:
for team in ['r', 'd']:
heroes = []
for n in range(1,6):
heroes.append(
[df.ix[match_id, '%s%s_%s' % (team, n, stat)]
for stat in stats])
heroes.sort(key=lambda x: (x[3], x[4], x[0], x[2]))
for n in range(1,6):
for i, stat in enumerate(stats):
df.ix[match_id, '%s%s_%s' %
(team, n, stat)] = heroes[n - 1][i]
简短的示例,其中不完整但有用的数据表示:
match_id r1_xp r1_gold r2_xp r2_gold r3_xp r3_gold d1_xp d1_gold d2_xp d2_gold
1 10 20 100 10 5000 300 0 0 15 5
2 1 1 1000 80 100 13 200 87 311 67
我想要的是按前缀(rN_ 和 dN_)的组对这些列进行排序,首先按 gold,然后按 xp
match_id r1_xp r1_gold r2_xp r2_gold r3_xp r3_gold d1_xp d1_gold d2_xp d2_gold
1 5000 300 10 20 100 20 15 5 0 0
2 1000 80 100 13 1 1 200 87 311 67
最佳答案
您可以使用:
df.set_index('match_id', inplace=True)
#create MultiIndex with 3 levels
arr = df.columns.str.extract('([rd])(\d*)_(.*)', expand=True).T.values
df.columns = pd.MultiIndex.from_arrays(arr)
#reshape df, sorting
df = df.stack([0,1]).reset_index().sort_values(['match_id','level_1','gold','xp'],
ascending=[True,False,False,False])
print (df)
match_id level_1 level_2 gold xp
4 1 r 3 300.0 5000.0
2 1 r 1 20.0 10.0
3 1 r 2 10.0 100.0
1 1 d 2 5.0 15.0
0 1 d 1 0.0 0.0
8 2 r 2 80.0 1000.0
9 2 r 3 13.0 100.0
7 2 r 1 1.0 1.0
5 2 d 1 87.0 200.0
6 2 d 2 67.0 311.0
#asign new values to level 2
df.level_2 = df.groupby(['match_id','level_1']).cumcount().add(1).astype(str)
#get original shape
df = df.set_index(['match_id','level_1','level_2']).stack().unstack([1,2,3]).astype(int)
df = df.sort_index(level=[0,1,2], ascending=[False, True, False], axis=1)
#Multiindex in columns to column names
df.columns = ['{}{}_{}'.format(x[0], x[1], x[2]) for x in df.columns]
df.reset_index(inplace=True)
print (df)
match_id r1_xp r1_gold r2_xp r2_gold r3_xp r3_gold d1_xp d1_gold \
0 1 5000 300 10 20 100 10 15 5
1 2 1000 80 100 13 1 1 200 87
d2_xp d2_gold
0 0 0
1 311 67
关于python - 对 pandas 分组的列进行排序,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40453417/
您好,我正在处理 BIRT 报告。我有一个查询,我必须对父级的重复数据进行分组,但子级也不能分组! 在我的查询中: item 是父项,item_ledger_entry 是子项。我有来自 item.N
我正在使用 GA API。 这是针对 MCF 目标报告(底部)的标准目标完成指标表(顶部) 看一下这个: 总数加起来 (12,238),但看看按 channel 分组的分割有多么不同!我以为这些会很接
我正在开发一个流量计数器,我想获得 IP 和重复计数,但是如何? 就像是 :select ip, count(ip) from Redirect 返回 : null total ip count 重定
我尝试编写一个正则表达式来匹配条件表达式,例如: a!=2 1+2=2+a 我尝试提取运算符。我当前的正则表达式是“.+([!=<>]+).+” 但问题是匹配器总是尝试匹配组中可能的最短字符串
在 MS Transact SQL 中,假设我有一个这样的表(订单): Order Date Order Total Customer # 09/30/2008 8
我想按 m.ID 分组,并对每个 m.id 求和 (pm.amount_construction* prod.anzahl) 实际上我有以下结果: Meterial_id | amount_const
我想根据多列中的值对值进行分组。这是一个例子: 我想得到输出: {{-30,-50,20},{-20,30,60},{-30,NULL or other value, 20}} 我设法到达: SELE
我正在尝试找出运行此查询的最佳方式。我基本上需要返回在我们的系统中只下了一个订单的客户的“登录”字段列表(登录字段基本上是客户 ID/ key )。 我们系统的一些背景...... 客户在同一日期下的
给定以下mysql结果集: id code name importance '1234', 'ID-CS-B', 'Chocolate Sauce'
大家好,我的数据框中有以下列: LC_REF 1 DT 16 2C 2 DT 16 2C 3 DT 16 2C 1 DT 16 3C 6 DT 16 3C 3
我有这样的 mongoDB 集合 { "_id" : "EkKTRrpH4FY9AuRLj", "stage" : 10, }, { "_id" : "EkKTRrpH4FY9
假设我有一组数据对,其中 index 0 是值,index 1 是类型: input = [ ('11013331', 'KAT'), ('9085267',
java中用stream进行去重,排序,分组 一、distinct 1. 八大基本数据类型 List collect = ListUtil.of(1, 2, 3, 1, 2).stream().fil
基本上,我从 TABLE_A 中的这个开始 France - 100 France - 200 France - 300 Mexico - 50 Mexico - 50 Mexico - 56 Pol
我希望这个正则表达式 ([A-Z]+)$ 将选择此示例中的最后一次出现: AB.012.00.022ABC-1 AB.013.00.022AB-1 AB.014.00.022ABAB-1 但我没有匹配
我创建了一个数据透视表,但数据没有组合在一起。 任何人都可以帮助我获得所需的格式吗? 我为获取数据透视表而编写的查询: DECLARE @cols AS NVARCHAR(MAX), -- f
我想按时间段(月,周,日,小时,...)选择计数和分组。例如,我想选择行数并将它们按 24 小时分组。 我的表创建如下。日期是时间戳。 CREATE TABLE MSG ( MSG_ID dec
在 SQL Server 2005 中,我有一个包含如下数据的表: WTN------------Date 555-111-1212 2009-01-01 555-111-1212 2009-
题 假设我有 k 个标量列,如果它们沿着每列彼此在一定距离内,我想对它们进行分组。 假设简单 k 是 2 并且它们是我唯一的列。 pd.DataFrame(list(zip(sorted(choice
问题 在以下数据框中 df : import random import pandas as pd random.seed(999) sz = 50 qty = {'one': 1, 'two': 2
我是一名优秀的程序员,十分优秀!