gpt4 book ai didi

python - 如何使用 Pandas 重构简单的数据帧解析代码

转载 作者:行者123 更新时间:2023-11-30 22:46:56 31 4
gpt4 key购买 nike

我正在使用 Pandas 来解析我创建的数据框:

# Initial DF    
A B C
0 -1 qqq XXX
1 20 www CCC
2 30 eee VVV
3 -1 rrr BBB
4 50 ttt NNN
5 60 yyy MMM
6 70 uuu LLL
7 -1 iii KKK
8 -1 ooo JJJ

我的目标是分析 A 列并将以下条件应用于数据框:

  1. 调查每一行
  2. 确定是否 df['A'].iloc[index]=-1
  3. 如果为真且 index=0将第一行标记为要删除
  4. 如果为真且 index=N将最后一行标记为要删除
  5. 如果 0<index<Ndf['A'].iloc[index]=-1并且上一行或下一行包含 -1 ( df['A'].iloc[index+]=-1df['A'].iloc[index-1]=-1 ),将行标记为要删除;否则替换-1 为前一个值和后一个值的平均值

最终的数据框应如下所示:

# Final DF    
A B C
0 20 www CCC
1 30 eee VVV
2 40 rrr BBB
3 50 ttt NNN
4 60 yyy MMM
5 70 uuu LLL

我能够通过编写应用上述条件的简单代码来实现我的目标:

将 pandas 导入为 pd

# create dataframe
data = {'A':[-1,20,30,-1,50,60,70,-1,-1],
'B':['qqq','www','eee','rrr','ttt','yyy','uuu','iii','ooo'],
'C':['XXX','CCC','VVV','BBB','NNN','MMM','LLL','KKK','JJJ']}
df = pd.DataFrame(data)

# If df['A'].iloc[index]==-1:
# - option 1: remove row if first or last row are equal to -1
# - option 2: remove row if previous or following row contains -1 (df['A'].iloc[index-1]==-1 or df['A'].iloc[index+1]==-1)
# - option 3: replace df['A'].iloc[index] if: df['A'].iloc[index]==-1 and (df['A'].iloc[index-1]==-1 or df['A'].iloc[index+1]==-1)
N = len(df.index) # number of rows
index_vect = [] # store indexes of rows to be deleated
for index in range(0,N):

# option 1
if index==0 and df['A'].iloc[index]==-1:
index_vect.append(index)
elif index>1 and index<N and df['A'].iloc[index]==-1:

# option 2
if df['A'].iloc[index-1]==-1 or df['A'].iloc[index+1]==-1:
index_vect.append(index)

# option 3
else:
df['A'].iloc[index] = int((df['A'].iloc[index+1]+df['A'].iloc[index-1])/2)

# option 1
elif index==N and df['A'].iloc[index]==-1:
index_vect.append(index)

# remove rows to be deleated
df = df.drop(index_vect).reset_index(drop = True)

正如您所看到的,代码相当长,我想知道您是否可以建议一种更智能、更有效的方法来获得相同的结果。此外,我注意到我的代码返回一条警告消息,原因是 df['A'].iloc[index] = int((df['A'].iloc[index+1]+df['A'].iloc[index-1])/2) 行你知道我如何优化这一行代码吗?

最佳答案

解决方案如下:

import numpy as np

# Let's replace -1 by Not a Number (NaN)
df.ix[df.A==-1,'A'] = np.nan

# If df.A is NaN and either the previous or next is also NaN, we don't select it
# This takes care of the condition on the first and last row too
df = df[~(df.A.isnull() & (df.A.shift(1).isnull() | df.A.shift(-1).isnull()))]

# Use interpolate to fill with the average of previous and next
df.A = df.A.interpolate(method='linear', limit=1)

这是生成的 df:

    A       B       C
1 20.0 www CCC
2 30.0 eee VVV
3 40.0 rrr BBB
4 50.0 ttt NNN
5 60.0 yyy MMM
6 70.0 uuu LLL

如果需要,您可以重置索引。

关于python - 如何使用 Pandas 重构简单的数据帧解析代码,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40720660/

31 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com