- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个非常简单的问题无法解决:
我有一个如下所示的数据框:
DB GOOG ATVI TSLA TWTR
1.0 -0.0129755 -0.00463688 -0.00408223 0.0653678 0.0779629
2.0 -0.052772 -0.00712359 -0.0120323 0.0230537 0.0245435
3.0 0.00875274 0.00762426 0.00176186 0.0834672 -0.0017326
4.0 -0.0125196 0.00657628 -0.00235884 0.0502074 0.0157572
5.0 -0.0470443 -0.00382168 -0.0153009 -0.0325997 -0.0235564
6.0 0.0140261 -0.00630647 -0.00265291 -0.037598 -0.0454938
7.0 0.000624415 -0.00429897 -0.00088587 -9.73558e-05 -0.0216945
8.0 -0.0138933 -0.00455289 -0.027357 -0.00682128 -0.0186916
9.0 -0.00311624 -0.000168211 -0.0100577 -0.00894537 -0.00181214
10.0 0.0864933 0.0151531 0.05061 0.0294589 0.0395802
对于每一行我想找到最大、第二大和最小值对应的列名。
示例:
对于第一行(索引 1.0),我想提取 TWTR(最大值)、TSLA(第二大值)和 DB(最小值)。
...
对于第五行(索引5.0),我想提取GOOG(最大值)、ATVI(第二大值)和DB(最小值)
..等等。
最简单的方法是什么?谢谢!
最佳答案
您可以使用非常快numpy.argsort
通过每行排序值更改列名称:
print (np.argsort(-df.values, axis=1))
[[4 3 2 1 0]
[4 3 1 2 0]
[3 0 1 2 4]
[3 4 1 2 0]
[1 2 4 3 0]
[0 2 1 3 4]
[0 3 2 1 4]
[1 3 0 4 2]
[1 4 0 3 2]
[0 2 4 3 1]]
print (df.columns[np.argsort(-df.values, axis=1)])
Index([['TWTR', 'TSLA', 'ATVI', 'GOOG', 'DB'],
['TWTR', 'TSLA', 'GOOG', 'ATVI', 'DB'],
['TSLA', 'DB', 'GOOG', 'ATVI', 'TWTR'],
['TSLA', 'TWTR', 'GOOG', 'ATVI', 'DB'],
['GOOG', 'ATVI', 'TWTR', 'TSLA', 'DB'],
['DB', 'ATVI', 'GOOG', 'TSLA', 'TWTR'],
['DB', 'TSLA', 'ATVI', 'GOOG', 'TWTR'],
['GOOG', 'TSLA', 'DB', 'TWTR', 'ATVI'],
['GOOG', 'TWTR', 'DB', 'TSLA', 'ATVI'],
['DB', 'ATVI', 'TWTR', 'TSLA', 'GOOG']],
dtype='object')
<小时/>
df = pd.DataFrame(df.columns[np.argsort(-df.values, axis=1)][:,[0,1,-1]], index=df.index)
df.columns = ['largest','second largest','smallest']
print (df)
largest second largest smallest
1.0 TWTR TSLA DB
2.0 TWTR TSLA DB
3.0 TSLA DB TWTR
4.0 TSLA TWTR DB
5.0 GOOG ATVI DB
6.0 DB ATVI TWTR
7.0 DB TSLA TWTR
8.0 GOOG TSLA ATVI
9.0 GOOG TWTR ATVI
10.0 DB ATVI GOOG
另一种解决方案(较慢),具有 apply
和自定义函数,其中对每行进行排序并获取索引
:
def f(x):
x = x.sort_values()
return pd.Series([x.index[-1], x.index[-2], x.index[0]],
index=['largest','second largest','smallest'])
df = df.apply(f ,axis=1)
print (df)
largest second largest smallest
1.0 TWTR TSLA DB
2.0 TWTR TSLA DB
3.0 TSLA DB TWTR
4.0 TSLA TWTR DB
5.0 GOOG ATVI DB
6.0 DB ATVI TWTR
7.0 DB TSLA TWTR
8.0 GOOG TSLA ATVI
9.0 GOOG TWTR ATVI
10.0 DB ATVI GOOG
<小时/>
df = df.apply(lambda x: x.sort_values().index ,axis=1)
df = df.iloc[:, [-1,-2,0]]
df.columns = ['largest','second largest','smallest']
print (df)
largest second largest smallest
1.0 TWTR TSLA DB
2.0 TWTR TSLA DB
3.0 TSLA DB TWTR
4.0 TSLA TWTR DB
5.0 GOOG ATVI DB
6.0 DB ATVI TWTR
7.0 DB TSLA TWTR
8.0 GOOG TSLA ATVI
9.0 GOOG TWTR ATVI
10.0 DB ATVI GOOG
时间:
#[10000 rows x 5 columns]
df = pd.concat([df]*1000).reset_index(drop=True)
<小时/>
In [357]: %timeit pd.DataFrame(df.columns[np.argsort(-df.values, axis=1)][:,[0,1,-1]], index=df.index, columns=['largest','second largest','smallest'])
1000 loops, best of 3: 974 µs per loop
In [358]: %timeit df.apply(f ,axis=1)
1 loop, best of 3: 3.91 s per loop
In [361]: %timeit df.apply(lambda x: x.sort_values().index ,axis=1).iloc[:, [-1,-2,0]]
1 loop, best of 3: 1.88 s per loop
In [362]: %timeit df.apply(lambda x: x.sort_values().index.to_series().iloc[0], axis=1)
1 loop, best of 3: 2.47 s per loop
In [363]: %timeit df.apply(lambda x: x.sort_values(ascending=False).index.to_series().iloc[0], axis=1)
1 loop, best of 3: 2.51 s per loop
In [364]: %timeit df.apply(lambda x: x.sort_values(ascending=False).index.to_series().iloc[1], axis=1)
1 loop, best of 3: 2.52 s per loop
In [365]: %timeit [df.T.sort_values(by=k).T.keys()[-1] for k in df.T.keys()]
1 loop, best of 3: 6.42 s per loop
关于python - 根据值选择 pandas 数据框的列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43181583/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!