- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想平滑在 200Hz 下获得的 FFT 图(我目前捕获了 500 个点),以便代表性峰值显示接近 THIS .
这是我的代码:
N = 500
T = 5/1000
y1 = np.array(data_Ax)
yf1 = scipy.fftpack.fft(y1)
xf1 = np.linspace(0.0, 1.0/(2.0*T), N/2)
yfft1 = 2.0/N * np.abs(yf1[:N//2])
plt.figure(figsize=(20, 3), dpi= 100, facecolor='w', edgecolor='k')
plt.plot(xf1, yfft1, 'g-', label ="FFT for Ax")
plt.xlabel('Frequency [Hz]')
plt.legend(loc=1)
为了平滑,我尝试使用这个:
rft = np.fft.rfft(yfft1)
y_smooth = np.fft.irfft(rft)
但是没有任何效果。
我很清楚 200Hz 是一个低采样频率,500 次测量并不算多,但这只是为了掌握程序的窍门。这是获得的图表:
我想知道:
感谢您提供的帮助!
L
最佳答案
平滑图:
我想你真正关心的是增加点数。因此,只需指定您想要使其看起来更平滑的点数即可。
例如,这里是与测量具有相同点数的 FFT:
n = 500
nfft = n
t = np.linspace(0, 0.1, n)
y = 0.5 + np.sin(2*np.pi*60*t)
yf = fftshift(fft(y, nfft))
f = fftshift(fftfreq(nfft, np.mean(np.diff(t))))
pyplot.plot(f, abs(yf))
pyplot.grid()
pyplot.xlim([-100, 100])
如果将 fft 点数更改为 4096,即 nfft=2**12
,那么您将获得更平滑的图形。
删除 0 Hz 处的峰值
如果您只关心 DC 值,则只需减去平均值即可。根据上面的示例,您可以将第 5 行更改为
yf = fftshift(fft(y - np.mean(y), nfft))
最小点数
从理论角度来看,您只需要满足奈奎斯特速率即可。然而对于视觉效果,FFT中的频率间隔是Fs/N。因此,如果您的采样率为 500 Hz 和 500 个点,则点之间的间距为 1 Hz,如果您的带宽为 5 Hz,这可能不够,因此您可以通过对信号进行零填充来增加 FFT 的点数,或者降低采样率(只要高于奈奎斯特)...
关于python - 在Python中平滑FFT图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44740542/
FFT 库(例如 FFTW 或 numpy.fft)通常提供两个函数 fft() 和 ifft()(及其用于实值输入的特殊版本)。这些功能似乎被定义为 ifft(fft(X)) == X 和 fft(
如果我有一个特定大小 M(2 的幂)的 FFT 实现,我如何计算一组大小 P=k*M 的 FFT,其中 k 也是 2 的幂? #define M 256 #define P 1024 comple
下午好! 我正在尝试基于我已有的简单递归 FFT 实现来开发 NTT 算法。 考虑以下代码(coefficients'的长度,让它为m,是2的精确幂): /// /// Calculates the
我正在分析时间序列数据,并希望提取 5 个主要频率分量并将其用作训练机器学习模型的特征。我的数据集是 921 x 10080 。每行是一个时间序列,总共有 921 个。 在探索可能的方法时,我遇到了各
我找不到任何官方文档来证明 scipy.fft 实际上是 numpy.fft.fftpack.fft 的链接。这是显示链接的 iPython session : In [1]: import scip
文档说 np.fft.fft 这样做: Compute the one-dimensional discrete Fourier Transform. 和 np.fft.rfft 这样做: Compu
近一个月来,我一直在与一个非常奇怪的错误作斗争。问你们是我最后的希望。我用 C 编写了一个程序,它集成了 2d Cahn–Hilliard equation在傅里叶(或倒数)空间中使用隐式欧拉 (IE
我一直在制作一个例程,使用 NumPy/Scipy 测量两个光谱之间的相位差。 我已经有了Matlab写的例程,所以我基本上是用NumPy重新实现了函数和相应的单元测试。但是,我发现单元测试失败了,因
我正在研究使用 Renderscript 对大型复杂输入数组执行 FFT。 FFT 是相当标准的,因为它涉及三个循环,但内部循环执行 FFT 中的蝶形运算。因为每个蝴蝶使用数组的不同部分,所以没有明显
我需要通过修改 FFT 结果来均衡音乐样本。 我知道如何获得每个输出虚数的频率,问题是修改这个值以获得“均衡器效果”。 我需要知道如何缩放这个值。 条目大小为 4096 个样本,采样率为 44100
我将在 kiss-fft 之前制定几个计划同时(平行),我可以这样做吗,或者换句话说,kiss-fft 线程安全吗? 谢谢 最佳答案 自述文件: No static data is used. Th
要在频域中插入信号,可以在时域中填充零并执行 FFT。 假设给定向量 X 中的元素数为 N 并且 Y 与 X 相同但在一侧用 N 零填充。然后下面给出相同的结果。 $$\hat{x}(k)=\sum_
我通过相关了解了 DFT 的工作原理,并将其用作理解 FFT 结果的基础。如果我有一个以 44.1kHz 采样的离散信号,那么这意味着如果我要获取 1 秒的数据,我将有 44,100 个样本。为了对其
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
我有以下代码...请注意#生成正弦曲线下的两行。一个使用比另一个更高的 2pi 精度值,但它们仍然应该给出几乎相同的结果。 import numpy as np import matplotlib.p
我正在努力确保 FFTW 做我认为它应该做的事情,但我遇到了问题。我正在使用 OpenCV 的 cv::Mat。我制作了一个测试程序,给定一个 Mat f,计算 ifft(fft(f)) 并将结果与
我是从事电信项目的计算机程序员。 在我们的项目中,我必须将一系列复数更改为它们的傅立叶变换。因此我需要一个高效的 FFT 代码来满足 C89 标准。 我正在使用以下代码,它运行良好: shor
我目前正在尝试了解 numpy 的 fft 函数。为此,我测试了以下假设: 我有两个函数,f(x) = x^2 和 g(x) = f'(x) = 2*x。根据傅立叶变换定律和 wolfram alph
我一直在使用 FFT,目前正在尝试使用 FFT 从文件中获取声音波形(最终对其进行修改),然后将修改后的波形输出回文件。我得到了声波的 FFT,然后对其使用了反 FFT 函数,但输出文件听起来一点也不
我是一名优秀的程序员,十分优秀!