gpt4 book ai didi

python - 如何将pandas数据框的单列拆分为带有组的多列?

转载 作者:行者123 更新时间:2023-11-30 22:30:09 33 4
gpt4 key购买 nike

我是 python pandas 的新手。我有一个如下所示的数据框:

df = pd.DataFrame({'Name': ['football', 'ramesh','suresh','pankaj','cricket','rakesh','mohit','mahesh'],
'age': ['25', '22','21','32','37','26','24','30']})
print df

Name age
0 football 25
1 ramesh 22
2 suresh 21
3 pankaj 32
4 cricket 37
5 rakesh 26
6 mohit 24
7 mahesh 30

“名称”列还包含“运动名称”和“运动人物名称”。我想将其分成两个不同的列,如下所示:

预期输出:

sports_name sport_person_name age
football ramesh 25
suresh 22
pankaj 32
cricket rakesh 26
mohit 24
mahesh 30

如果我在“名称”列上进行分组,我不会得到预期的输出,并且它显然是直接输出,因为“名称”列中没有重复项。我需要使用什么才能获得预期的输出?

编辑:如果不想对运动名称进行硬编码

df = pd.DataFrame({'Name': ['football', 'ramesh','suresh','pankaj','cricket','rakesh','mohit','mahesh'],
'age': ['', '22','21','32','','26','24','30']})

df = df.replace('', np.nan, regex=True)

nan_rows = df[df.isnull().T.any().T]
sports = nan_rows['Name'].tolist()

df['sports_name'] = df['Name'].where(df['Name'].isin(sports)).ffill()
d = {'Name':'sport_person_name'}
df = df[df['sports_name'] != df['Name']].reset_index(drop=True).rename(columns=d)
df = df[['sports_name','sport_person_name','age']]
print (df)

我刚刚检查了除了“名称”列之外的所有其余列中包含 NAN 值的行,并且它肯定是体育名称。我创建了该运动名称的列表,并利用以下解决方案创建 sports_name 和 sports_person_name 列。

最佳答案

您可以使用:

#define list of sports
sports = ['football','cricket']
#create NaNs if no sport in Name, forward filling NaNs
df['sports_name'] = df['Name'].where(df['Name'].isin(sports)).ffill()
#remove same values in columns sports_name and Name, rename column
d = {'Name':'sport_person_name'}
df = df[df['sports_name'] != df['Name']].reset_index(drop=True).rename(columns=d)
#change order of columns
df = df[['sports_name','sport_person_name','age']]
print (df)
sports_name sport_person_name age
0 football ramesh 22
1 football suresh 21
2 football pankaj 32
3 cricket rakesh 26
4 cricket mohit 24
5 cricket mahesh 30

DataFrame.insert 类似的解决方案- 那么不需要重新排序:

#define list of sports
sports = ['football','cricket']
#rename column by dict
d = {'Name':'sport_person_name'}
df = df.rename(columns=d)
#create NaNs if no sport in Name, forward filling NaNs
df.insert(0, 'sports_name', df['sport_person_name'].where(df['sport_person_name'].isin(sports)).ffill())
#remove same values in columns sports_name and Name
df = df[df['sports_name'] != df['sport_person_name']].reset_index(drop=True)
print (df)
sports_name sport_person_name age
0 football ramesh 22
1 football suresh 21
2 football pankaj 32
3 cricket rakesh 26
4 cricket mohit 24
5 cricket mahesh 30

如果只需要一个 sport 值,请将 limit=1 添加到 ffill 并将 NaN 替换为空字符串:

sports = ['football','cricket']
df['sports_name'] = df['Name'].where(df['Name'].isin(sports)).ffill(limit=1).fillna('')
d = {'Name':'sport_person_name'}
df = df[df['sports_name'] != df['Name']].reset_index(drop=True).rename(columns=d)
df = df[['sports_name','sport_person_name','age']]
print (df)
sports_name sport_person_name age
0 football ramesh 22
1 suresh 21
2 pankaj 32
3 cricket rakesh 26
4 mohit 24
5 mahesh 30

关于python - 如何将pandas数据框的单列拆分为带有组的多列?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46149019/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com