gpt4 book ai didi

python - 如何使用生成器中的值填充 2D Python numpy 数组?

转载 作者:行者123 更新时间:2023-11-30 22:29:41 25 4
gpt4 key购买 nike

基于答案here似乎没有一种简单的方法可以用生成器中的数据填充 2D numpy 数组。

但是,如果有人能想出一种方法来矢量化或以其他方式加速以下功能,我将不胜感激。

这里的区别是我想批量处理生成器中的值,而不是在内存中创建整个数组。我能想到的唯一方法是使用 for 循环。

import numpy as np
from itertools import permutations

permutations_of_values = permutations(range(1,20), 7)

def array_from_generator(generator, arr):
"""Fills the numpy array provided with values from
the generator provided. Number of columns in arr
must match the number of values yielded by the
generator."""
count = 0
for row in arr:
try:
item = next(generator)
except StopIteration:
break
row[:] = item
count += 1
return arr[:count,:]

batch_size = 100000

empty_array = np.empty((batch_size, 7), dtype=int)
batch_of_values = array_from_generator(permutations_of_values, empty_array)

print(batch_of_values[0:5])

输出:

[[ 1  2  3  4  5  6  7]
[ 1 2 3 4 5 6 8]
[ 1 2 3 4 5 6 9]
[ 1 2 3 4 5 6 10]
[ 1 2 3 4 5 6 11]]

速度测试:

%timeit array_from_generator(permutations_of_values, empty_array)
10 loops, best of 3: 137 ms per loop

添加:

正如@COLDSPEED(谢谢)所建议的,这里是一个使用列表从生成器收集数据的版本。它的速度大约是上面代码的两倍。谁能对此进行改进:

permutations_of_values = permutations(range(1,20), 7)

def array_from_generator2(generator, rows=batch_size):
"""Creates a numpy array from a specified number
of values from the generator provided."""
data = []
for row in range(rows):
try:
data.append(next(generator))
except StopIteration:
break
return np.array(data)

batch_size = 100000

batch_of_values = array_from_generator2(permutations_of_values, rows=100000)

print(batch_of_values[0:5])

输出:

[[ 1  2  3  4  5  6  7]
[ 1 2 3 4 5 6 8]
[ 1 2 3 4 5 6 9]
[ 1 2 3 4 5 6 10]
[ 1 2 3 4 5 6 11]]

速度测试:

%timeit array_from_generator2(permutations_of_values, rows=100000)
10 loops, best of 3: 85.6 ms per loop

最佳答案

您可以在基本恒定的时间内计算出 future 的大小。就这样做,并使用 numpy.fromiter:

In [1]: import math, from itertools import permutations, chain

In [2]: def n_chose_k(n, k, fac=math.factorial):
...: return fac(n)/fac(n-k)
...:

In [3]: def permutations_to_array(r, k):
...: n = len(r)
...: size = int(n_chose_k(n, k))
...: it = permutations(r, k)
...: arr = np.fromiter(chain.from_iterable(it),
...: count=size, dtype=int)
...: arr.size = size//k, k
...: return arr
...:

In [4]: arr = permutations_to_array(range(1,20), 7)

In [5]: arr.shape
Out[5]: (36279360, 7)

In [6]: arr[0:5]
Out[6]:
array([[ 1, 2, 3, 4, 5, 6, 7],
[ 1, 2, 3, 4, 5, 6, 8],
[ 1, 2, 3, 4, 5, 6, 9],
[ 1, 2, 3, 4, 5, 6, 10],
[ 1, 2, 3, 4, 5, 6, 11]])

只要 r 仅限于具有 len 的序列,此方法就有效。

编辑以添加我为 batchsize*k block 生成器编写的实现,并带有修剪选项!

import math
from itertools import repeat, chain

import numpy as np

def n_chose_k(n, k, fac=math.factorial):
return fac(n)/fac(n-k)

def permutations_in_batches(r, k, batchsize=None, fill=0, dtype=int, trim=False):
n = len(r)
size = int(n_chose_k(n, k))
if batchsize is None or batchsize > size:
batchsize = size
perms = chain.from_iterable(permutations(r, k))
count = batchsize*k
remaining = size - count
while remaining > 0:
current = np.fromiter(perms, count=count, dtype=dtype)
current.shape = batchsize, k
yield current
remaining -= count
if remaining: # remaining is negative
remaining = -remaining
if not trim:
padding = repeat(fill, remaining)
finalcount = count
finalshape = batchsize, k
else:
q = remaining//k # always divisible q%k==0
finalcount = q*k
padding = repeat(fill, remaining)
finalshape = q, k
current = np.fromiter(chain(perms, padding), count=finalcount, dtype=dtype)
current.shape = finalshape
else: # remaining is 0
current = np.fromiter(perms, count=batchsize, dtype=dtype)
current.shape = batchsize, k
yield current

关于python - 如何使用生成器中的值填充 2D Python numpy 数组?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46270580/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com