gpt4 book ai didi

python - super 简单示例的不正确的 Python Numpy 特征向量值

转载 作者:行者123 更新时间:2023-11-30 22:21:54 25 4
gpt4 key购买 nike

我正在尝试学习如何使用 numpy 在一个简单的示例中确定特征向量和值,但结果看起来不正确。这是我的代码:

import numpy as np
import numpy.linalg as la

# create the matrix
matrix = np.array([[-2, 1, 0], [1, -2, 1], [0, 1, -2]])
print("Matrix:\n", matrix)

# calculate the eigenvalues and vectors
vals, vecs = np.linalg.eigh(matrix)

# print the eigenvalues and vectores
print("vals:\n", vals)
print("vecs:\n", vecs)

# get the eigenvectors
v1 = vecs[:,0]
v2 = vecs[:,1]
v3 = vecs[:,2]

print("v1:", v1)
print("v2:", v2)
print("v3:", v3)

# compute dot
dot1 = np.dot(matrix, v1)
dot2 = np.dot(matrix, v2)
dot3 = np.dot(matrix, v3)

# is the dot collinear to the eigenvectors?
print("dot1 / v1", dot1 / v1)
print("dot2 / v2", dot2 / v2)
print("dot3 / v3", dot3 / v3)

这是输出:

Matrix:
[[-2 1 0]
[ 1 -2 1]
[ 0 1 -2]]
vals:
[-3.41421356 -2. -0.58578644]
vecs:
[[ 5.00000000e-01 -7.07106781e-01 -5.00000000e-01]
[ -7.07106781e-01 4.88509860e-17 -7.07106781e-01]
[ 5.00000000e-01 7.07106781e-01 -5.00000000e-01]]
v1: [ 0.5 -0.70710678 0.5 ]
v2: [ -7.07106781e-01 4.88509860e-17 7.07106781e-01]
v3: [-0.5 -0.70710678 -0.5 ]
dot1 / v1 [-3.41421356 -3.41421356 -3.41421356]
dot2 / v2 [-2. -4.54534541 -2. ]
dot3 / v3 [-0.58578644 -0.58578644 -0.58578644]

当我使用在线计算器( http://www.arndt-bruenner.de/mathe/scripts/engl_eigenwert2.htm )计算特征向量时,我得到:实特征值:{ -3.414213562373095 ; -2 ; -0.585786437626905 }

特征向量:

对于特征值 -3.414213562373095: [ 1 ; -1.4142135623730954; 1]

对于特征值 -2: [ -1 ; 0 ; 1]

对于特征值 -0.585786437626905: [ 1 ; 1.4142135623730954; 1]

特征值匹配,但特征向量不匹配。

问题:1. numpy 是否缩放特征向量?

  • 如何证明(矩阵点特征向量)与特征向量共线,以证明我具有正确的特征向量。我认为用点积除以特征向量会显示一个恒定的偏移量,但特征向量 2 不会发生这种情况。话虽这么说,当我将 numpy 与在线计算器进行比较时,特征向量 2 对我来说看起来并不正确。这是显示共线性的正确方法吗?
  • 最佳答案

    Numpy 正确计算特征向量/值。您可以通过运行(问题 2 的答案)来检查这一点:

    print(np.dot(vecs,np.dot(np.diag(vals),vecs.T)) - matrix)
    print(np.dot(vecs,vecs.T))

    第一个输出告诉您特征值分解与矩阵的近似程度。第二个输出显示特征向量是正交的。这两个条件满足特征值分解的约束/目标。

    问题 1:是的,numpy 将特征向量的长度标准化为 1。

    lengths = [print(la.norm(vecs[:,i])) for i in range(3)]

    注意:您还可以通过计算点积来确认这两种方法的特征向量是否相等:

    print(np.dot(vecs[:,0],[ -1, 0, 1 ]))

    是零,而

    np.dot(vecs[:,0],[ 1, -1.4142135623730954, 1 ]) 

    是2,它是两个向量的长度的乘积。

    关于python - super 简单示例的不正确的 Python Numpy 特征向量值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48492637/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com